Molecular Classification Trail of Colorectal Cancer Using Immunohistochemical Markers

Authors

  • Amany Mahmoud Mohamed
  • Sabah Ahmed Mohamed Fadel
  • Mohamed Mostafa Ali Wahdan
  • Abdallah Hedia Mohamed
  • Mahmoud Gamal Ameen Taher

Keywords:

Colorectal Cancer, Molecular Classification, Immunohistochemistry, Biomarkers, Tumor Subtypes

Abstract

Colorectal cancer (CRC), the third most common and second deadliest malignancy worldwide, is primarily composed of adenocarcinomas and exhibits notable genetic, molecular, and histopathological heterogeneity. Its progression involves chromosomal instability, microsatellite instability, and CpG island methylation, with major genetic contributors including APC, TP53, and KRAS mutations. Risk factors range from hereditary syndromes and inflammatory bowel diseases to dietary and environmental exposures. CRC is classified into four consensus molecular subtypes (CMS): CMS1 (hypermutated, immune-rich), CMS2 (epithelial, chromosomally unstable), CMS3 (epithelial, KRAS-mutated, metabolic), and CMS4 (mesenchymal, invasive, with poor prognosis). Histologically, CRC tumors exhibit features such as tumor budding, tumor-infiltrating lymphocytes (TILs), tumor deposits (TDs), perineural invasion (PNI), and lymphovascular invasion (LVI), all of which impact prognosis and therapeutic response. The epithelial-mesenchymal transition (EMT) plays a crucial role in tumor progression, metastasis, and resistance, marked by loss of E-cadherin and nuclear β-catenin localization alongside vimentin expression. Immunohistochemistry (IHC) aids in molecular classification using markers such as CDX2, CK20, CK7, β-catenin, vimentin, and E-cadherin. High vimentin and nuclear β-catenin correlate with poor survival, while E-cadherin loss predicts invasiveness and poor outcomes. EMT-regulated gene signatures and tumor microenvironment components, particularly cancer-associated fibroblasts and macrophages, further influence tumor behavior and therapeutic resistance. Accurate subtyping using IHC panels provides a cost-effective alternative to transcriptomic profiling, enhancing prognostication and guiding individualized therapy. Integrating molecular, histological, and immunohistochemical features strengthens CRC classification, enabling more precise staging, prognostication, and treatment planning. The review aims to demonstrate how immunohistochemical markers can be used to classify colorectal cancer into molecular subtypes for improved diagnosis, prognosis, and personalized treatment

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Rawla P, Sunkara T and Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev. 2019; 14(2):89-103. doi:10.5114/pg.2018.81072

Ono Y and Yilmaz O. Emerging and under-recognised patterns of colorectal carcinoma morphologies: a comprehensive review. J Clin Pathol. 2024; 77(7):439-451. doi:10.1136/jcp-2023-209143

Mahmoud HS, Fayed HM, El Dosoky M and Tag-Adeen M. Assessment of fecal calprotectin level in inflammatory, infectious and malignant gastrointestinal diseases. SVU Int J Med Sci. 2021; 4(2):14-24. doi:10.21608/svuijm.2020.49745.1044

Ilieva N, Tashkova D, Staykov D, Serteva D, Feodorova Y, Mehterov N, et al. Immunohistochemical expression of CK20, CK7, and CDX2 in colorectal carcinoma in correlation with pathomorphological characteristics. Folia Med (Plovdiv). 2022; 64(2):214-220. doi:10.3897/folmed.64.e65031

Kim WK, Kwon Y, Jang M, Park M, Kim J, Cho S, et al. β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Sci Rep. 2019; 9(1):18440. doi:10.1038/s41598-019-54908-z

Mubarak H, Hussein HM, Omar MA and Mubarak MM. Recent advances in robotic surgery for colon and rectal cancer. SVU Int J Med Sci. 2022; 5(2):547-552. doi:10.21608/svuijm.2021.69186.1143

Fawzy MA, Afifi MT, Ahmed SM and Shamseya A. Study of the 16s rRNA gene sequences of gut microbiome in some Egyptian patients with colorectal cancer. SVU Int J Med Sci. 2025; 8(1):351-364. doi:10.21608/svuijm.2023.220485.1609

Dunne PD and Arends MJ. Molecular pathological classification of colorectal cancer—an update. Virchows Arch. 2024; 484(2):273-285. doi:10.1007/s00428-023-03589-2

Niknami Z, Muhammadnejad A, Ebrahimi A, Harsani Z and Shirkoohi R. Significance of E-cadherin and Vimentin as epithelial-mesenchymal transition markers in colorectal carcinoma prognosis. EXCLI J. 2020; 19:917-927. doi:10.17179/excli2020-2392

Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, et al. Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 2021;12(4):1–18. doi:10.1038/s41419-021-03664-1

Chandan VS. Normal Histology of Gastrointestinal Tract. In: Zhang, L, Chandan V, Wu TT. (eds) Surgical Pathology of Non-neoplastic Gastrointestinal Diseases. Springer, Cham. 2019. https://doi.org/10.1007/978-3-030-15573-5_1

Almughamsi AM, Ban AM, Mohammed MA, Seraj AS, Domlo HA, Alayoubi HM, et al. Assessing knowledge gaps in colorectal cancer screening among physicians in Al-Madinah, Saudi Arabia: implications for targeted education programs. SVU Int J Med Sci. 2024; 7(2):842-857. doi:10.21608/svuijm.2024.333396.2008

Ogino S and Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn. 2008; 10(1):13–27.

Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010; 138(6):2044–58.

Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006; 38(7):787–93.

Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016; 11:967–76.

Maida M, Macaluso FS, Ianiro G, Mangiola F, Sinagra E, Hold G, et al. Screening of colorectal cancer: present and future. Expert Rev Anticancer Ther. 2017; 17(12):1131–46.

Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, et al. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med. 2019;69:2–9

Roncucci L and Mariani F. Prevention of colorectal cancer: How many tools do we have in our basket? Eur J Intern Med. 2015;26(10):752–6

Sun Y. Advanced course in clinical oncology.1. Beijing: People’s Military Medical Press; 2014. p. 889

Poulogiannis G, Ichimura K, Hamoudi RA, Luo F, Leung SY, Yuen ST, Harrison DJ, Wyllie AH, Arends MJ . Prognostic relevance of DNA copy number changes in colorectal cancer. J Pathol .2010; 220(3):338–347

Gay LJ, Arends MJ, Mitrou PN, Bowman R, Ibrahim AE, Happerfield L, Luben R, McTaggart A, Ball RY, Rodwell SA . MLH1 promoter methylation, diet, and lifestyle factors in mismatch repair deficient colorectal cancer patients from EPIC-Norfolk. Nutr Cancer: Int J.2011; 63(7):1000–1010.

Cerretelli G, Ager A, Arends MJ, Frayling IM. Molecular pathology of Lynch syndrome. J Pathol .2020; 250(5):518–531.

Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487(7407):330–337. doi:10.1038/nature11252.

Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C. et al. The consensus molecular subtypes of colorectal cancer. Nat Med.2015; 21(11):1350–1356

Müller MF, Ibrahim AEK, Arends MJ .Molecular pathological classification of colorectal cancer. Virchows Arch.2016; 469(2):125–134.

Lino-Silva LS, Xinaxtle DL, Salcedo-Hernández RA. Tumor deposits in colorectal cancer: the need for a new “pN” category. Ann Transl Med 2020;8(12):733

Ueno H, Nagtegaal ID, Quirke P, Sugihara K, Ajioka Y. Tumor deposits in colorectal cancer: Refining their definition in the TNM system. Ann Gastroenterol Surg. 2023;7(2):225-235doi:10.1002/ags3.12652

Mirkin KA, Kulaylat AS, Hollenbeak CS, Messaris E. Prognostic Significance of Tumor Deposits in Stage III Colon Cancer. Ann. Surg. Oncol. 2018; 25:3179–3184.

Liu F, Zhao J, Li C, et al. The unique prognostic characteristics of tumor deposits in colorectal cancer patients. Ann Transl Med. 2019; 7(23):769. doi:10.21037/atm.2019.11.69

Amin MB, Edge SB, Greene FL, et al. (Eds.) AJCC Cancer Staging Manual. 8th Ed. New York: Springer; 2017.

Nagtegaal ID, Knijn N, Hugen N, Marshall HC, Sugihara K, tot T, et al. Tumor deposits in colorectal cancer: improving the value of modern staging‐a systematic review and meta‐analysis. J Clin Oncol. 2017; 35:1119–27.

Wu WX, Zhang DK, Chen SX, et al. Prognostic impact of tumor deposits on overall survival in colorectal cancer: Based on Surveillance, Epidemiology, and End Results database. World J Gastrointest Oncol. 2022; 14(9):1699-1710. doi:10.4251/wjgo.v14.i9.1699

Jakubowska, K, Koda M, Kisielewski W, Kańczuga Koda, L, Famulski, W."Tumor infiltrating lymphocytes in primary tumors of colorectal cancer and their metastases ". Experimental and Therapeutic Medicine 18.6 (2019): 4904-4912.

Huang A, Xiao Y, Peng C. et al. 53BP1 Expression and Immunoscore Are Associated with the Efficacy of Neoadjuvant Chemoradiotherapy for Rectal Cancer. Strahlenther. Onkol. 2020, 196, 465–473.

Tamari H, Kitadai Y, Takigawa H, Yuge R, Urabe Y, Shimamoto F, Oka S. Investigating the Role of Tumor-Infiltrating Lymphocytes as Predictors of Lymph Node Metastasis in Deep Submucosal Invasive Colorectal Cancer: A Retrospective Cross-Sectional Study. Cancers. 2023; 15(21):5238. https://doi.org/10.3390/cancers15215238

Karki S & Pariyar S. Tumor-infiltrating lymphocytes in colorectal carcinoma. Journal of Pathology of Nepal.2021; 11(2), 1859–1863. https://doi.org/10.3126/jpn.v11i2.38227

Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018; 391(10135):2128-2139. doi:10.1016/S0140-6736(18)30789-X

Lugli A, Kirsch R, Ajioka Y, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017; 30(9):1299-1311. doi:10.1038/modpathol.2017.46

De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D. et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. 2017; Br. J. Cancer 116, 58–65.

Cho SJ and Kakar S. Tumor Budding in Colorectal Carcinoma: Translating a Morphologic Score Into Clinically Meaningful Results. Arch Pathol Lab Med. 2018; 142(8):952-957. doi:10.5858/arpa.2018-0082-RA

Rogers AC, Winter DC, Heeney A, et al. Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer. 2016; 115(7):831-840. doi:10.1038/bjc.2016.274

Zlobec I, Berger MD & Lugli A. Tumour budding and its clinical implications in gastrointestinal cancers. Br J Cancer 123, 700–708 (2020). https://doi.org/10.1038/s41416-020-0954-z

Derynck R and Weinberg RA. EMT and Cancer: More Than Meets the Eye. Dev Cell. 2019; 49:313–316.

Luo YH, Yan ZC, Liu JY, et al. Association of tumor budding with clinicopathological features and prognostic value in stage III-IV colorectal cancer. World J Gastroenterol. 2024; 30(2):158-169. doi:10.3748/wjg.v30.i2.158

Mitrovic B, Handley K, Assarzadegan N, et al. Prognostic and Predictive Value of Tumor Budding in Colorectal Cancer. Clin Colorectal Cancer. 2021; 20(3):256-264. doi:10.1016/j.clcc.2021.05.003

Batsakis JG. Nerves and neurotropic carcinomas. Ann. Otol Rhinol Laryngol. 1985; 94(4 Pt 1):426–427.

Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009; 115(15):3379-3391. doi:10.1002/cncr.24396

Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID. Perineural invasion is a strong prognostic factor in colorectal cancer: a systematic review. Am. J. Surg. Pathol.2016; 40(1):103–12.

Al-Sukhni E, Attwood K, Gabriel EM, LeVea CM, Kanehira K, Nurkin SJ. Lymphovascular and perineural invasion are associated with poor prognostic features and outcomes in colorectal cancer: A retrospective cohort study. Int J Surg. 2017; 37:42-49. doi:10.1016/j.ijsu.2016.08.528

Hu G, Li L, Hu K. Clinical implications of perineural invasion in patients with colorectal cancer. Medicine (Baltimore). 2020; 99(17):e19860. doi:10.1097/MD.0000000000019860

Zhang L, Yang L, Jiang S, Yu M. Nerve Dependence in Colorectal Cancer. Front Cell Dev Biol. 2022; 10:766653. doi:10.3389/fcell.2022.766653

Wang H, Huo R, He K, et al. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr). 2024; 47(1):1-17. doi:10.1007/s13402-023-00857-y

Burgart LJ, Kakar S, et al. Washington, Protocol for the Examination of Resection Specimens from Patients with Primary Carcinoma of the Colon and Rectum (College of American Pathologists, 2020)

Benson AB, Venook AP, Al-Hawary MM, et al. NCCN Guidelines Insights: Colon Cancer, Version 2.2018. J Natl Compr Canc Netw. 2018; 16(4):359-369. doi:10.6004/jnccn.2018.0021

Lim SB, Yu CS, Jang SJ, et al. Prognostic significance of lymphovascular invasion in sporadic colorectal cancer. Dis Colon Rectum. 2010; 53(4):377–384.

Pei Q, Zhu H, Tan F, et al. Intravascular emboli is an independent risk factor for the prognosis of stage III colorectal cancer patients after radical surgery. Oncotarget. 2016; 7(35):57268-57276. doi:10.18632/oncotarget.11266

Gao Z, Cao H, Xu X, Wang Q, Wu Y, Lu Q. Prognostic value of lymphovascular invasion in stage II colorectal cancer patients with an inadequate examination of lymph nodes. World J Surg Oncol. 2021; 19(1):125. doi:10.1186/s12957-021-02224-3

Wang X, Cao Y, Ding M, et al. Oncological and prognostic impact of lymphovascular invasion in Colorectal Cancer patients. Int J Med Sci. 2021; 18(7):1721-1729. doi:10.7150/ijms.53555

Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 2021; 22:e358–e368. doi: 10.1016/S1470-2045(21)00343-0.

Mizukoshi K, Okazawa Y, Haeno H, et al. Metastatic seeding of human colon cancer cell clusters expressing the hybrid epithelial/mesenchymal state. Int J Cancer. 2020; 146(9):2547-2562. doi:10.1002/ijc.32672

Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018;13:395–412

Su J, Morgani SM, David CJ, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1 [published correction appears in Nature. 2020 Feb; 578(7793):E11. doi: 10.1038/s41586-020-1956-y]. Nature. 2020; 577(7791):566-571. doi:10.1038/s41586-019-1897-5

Vu T and Datta PK. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis. Cancers (Basel). 2017; 9(12):171. doi:10.3390/cancers9120171

Dongre A and Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019; 20:69–84.

Celesti G, Di Caro G, Bianchi P, et al. Presence of Twist1-positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors. Gastroenterology. 2013; 145(3):647-57.e15. doi:10.1053/j.gastro.2013.05.011

Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022; 15(1):129. doi:10.1186/s13045-022-01347-8

Elbadr MM, Mahrous MM, Alorabi M, Elbadre HM, Mohamed R and Ellisy RA. Role of dihydropyrimidine dehydrogenase genetic polymorphism and vitamin D assay for 5-fluorouracil therapy in Upper Egypt colorectal cancer patients. SVU Int J Med Sci. 2024; 7(2):917-935. doi:10.21608/svuijm.2024.308049.1949

Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022; 72(4):372-401. doi:10.3322/caac.21728

Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends Pharmacol Sci. 2023; 44(4):222-236. doi:10.1016/j.tips.2023.01.003

He S, Li X, Zhou X, Weng W, Lai J. Role of epithelial cell-mesenchymal transition regulators in molecular typing and prognosis of colon cancer. J Gastrointest Oncol 2023; 14(2):744-757. doi: 10.21037/jgo-23-49

Ren H, Bösch F, Pretzsch E, et al. Identification of an EMT-related Gene Signature Predicting Recurrence in Stage II/III Colorectal Cancer: A Retrospective Study in 1780 Patients. Ann Surg. 2022; 276(5):897-904. doi:10.1097/SLA.0000000000005644

Lu J, Kornmann M, Traub B. Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. Int J Mol Sci. 2023; 24(19):14815. doi:10.3390/ijms241914815

Shan Z, Wu W, Yan X, et al. A novel epithelial-mesenchymal transition molecular signature predicts the oncological outcomes in colorectal cancer. J Cell Mol Med. 2021; 25(7):3194-3204. doi:10.1111/jcmm.16387

Tauriello DVF and Batlle E. Targeting the Microenvironment in Advanced Colorectal Cancer. Trends Cancer. 2016; 2(9):495-504. doi:10.1016/j.trecan.2016.08.001

Wei C, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019; 18(1):64. doi:10.1186/s12943-019-0976-4

Zhao S, Sun H, Jiang W, et al. miR-4775 promotes colorectal cancer invasion and metastasis via the Smad7/TGFβ-mediated epithelial to mesenchymal transition. Mol Cancer. 2017; 16(1):12. doi:10.1186/s12943-017-0585-z

Trinh A, Trumpi K, De Sousa E Melo F, et al. Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clin Cancer Res. 2017; 23(2):387-398. doi:10.1158/1078-0432.CCR-16-0680

Ten Hoorn S, Trinh A, de Jong J, Koens L, Vermeulen L. Classification of Colorectal Cancer in Molecular Subtypes by Immunohistochemistry. Methods Mol Biol. 2018; 1765:179-191. doi:10.1007/978-1-4939-7765-9_11

Wang C, Zhang H, Liu Y, Wang Y, Hu H, Wang G. Molecular subtyping in colorectal cancer: A bridge to personalized therapy (Review). Oncol Lett. 2023; 25(6):230. doi:10.3892/ol.2023.13816

Hol EM and Capetanaki Y. Type III intermediate filaments desmin, glial fibrillary acidic protein GFAP), vimentin, and peripherin. Cold Spring Harbor Perspect Biol Dec. 2017, 9, 10.1101/cshperspect.a021642. Art. no. 12.

Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol. 2023; 85:102246. doi:10.1016/j.ceb.2023.102246

Choi E, Bae JS, Kang MJ, Chung MJ, Jang KY, Park HS, and Moon WS. Expression of epithelial-mesenchymal transition and cancer stem cell markers in colorectal adenocarcinoma: Clinicopathological significance, Oncology Reports. (2017) 38, no. 3, 1695–1705, 2-s2.0-85026386601

Brzozowa-Zasada M, Wyrobiec G, Piecuch A, Jasiński D. Vimentin immunoexpression and its prognostic activity in colon cancer among Caucasian patients. Prz Gastroenterol. 2022; 17(2):123-129. doi:10.5114/pg.2022.116408

Bukhari S, Mokhdomi TA, Chikan NA, Amin A, Qazi H.et al. Affinity proteomics led identification of vimentin as a potential biomarker in colon cancers: Insights from serological screening and computational modelling, Molecular BioSystems. (2015) 11, no. 1, 159–169, 2-s2.0-84918768927

Al-Maghrabi J. Vimentin immunoexpression is associated with higher tumor grade, metastasis, and shorter survival in colorectal cancer. Int J Clin Exp Pathol. 2020; 13(3):493-500. Published 2020 Mar 1.

Cheng X, Xu X, Chen D, Zhao F, Wang W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 2019; 110:473-481. doi:10.1016/j.biopha.2018.11.082

Dahlmann M, Monks A, Harris ED, et al. Combination of Wnt/β-Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers (Basel). 2021; 14(1):37doi:10.3390/cancers14010037

Rebouissou S, Franconi A, Calderaro J. et al. Genotype-phenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression. Hepatology. 2016; 64:2047–2061.

Matly A, Quinn JA. McMillan DC, Park JH, Edwards J. The Relationship between β-Catenin and Patient Survival in Colorectal Cancer Systematic Review and Meta-Analysis. Crit. Rev. Oncol./Hematol. 2021; 163:103337.

Christou N, Perraud A, Blondy S, Jauberteau MO, Battu S, Mathonnet M. E-cadherin: A potential biomarker of colorectal cancer prognosis. Oncol Lett. 2017; 13(6):4571-4576. doi:10.3892/ol.2017.6063

Loh CY, Chai JY, Tang TF, et al. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells. 2019; 8(10):1118. doi:10.3390/cells8101118

Debnath P, Huirem RS, Dutta P, Palchaudhuri S. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep. 2022; 42(1):BSR20211754. doi:10.1042/BSR20211754

Tunuguntla A, Suresh TN, Pn S. Association Between the Immunohistochemistry Expression of E-cadherin, Beta-Catenin, and CD44 in Colorectal Adenocarcinoma. Cureus 2023, 15, e35686.

Wang W, Jin J, Zhou Z. et al. Snail inhibits metastasis via regulation of E-cadherin and is associated with prognosis in colorectal cancer. Oncol. Lett. 2023, 25(1), 271-281.

Markowski AR, Ustymowicz K, Markowska AJ, Romańczyk W, Guzińska-Ustymowicz K. E-Cadherin Expression Varies Depending on the Location within the Primary Tumor and Is Higher in Colorectal Cancer with Lymphoid Follicles. Cancers. 2023; 15(12):3260. https://doi.org/10.3390/cancers15123260

.

Downloads

Published

2025-05-21

How to Cite

1.
Mohamed AM, Mohamed Fadel SA, Ali Wahdan MM, Hedia Mohamed A, Ameen Taher MG. Molecular Classification Trail of Colorectal Cancer Using Immunohistochemical Markers. J Neonatal Surg [Internet]. 2025May21 [cited 2025Sep.22];14(26S):137-48. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6226