A Review of Fatigue Performance and Failure Mechanisms in Dental Restorative Materials Under Dynamic Occlusal Loading
Keywords:
Fatigue failure, dental restorative materials, dynamic occlusal loading, material performance, failure mechanismsAbstract
This study presents a comprehensive comparative analysis of fatigue performance and failure mechanisms in contemporary dental restorative materials subjected to dynamic occlusal loading. Recognizing that fatigue failure constitutes a principal cause of clinical restoration failure, the investigation evaluates ceramics, resin-based composites, and metal-based restoratives under cyclic loading conditions designed to replicate physiological mastication forces. Using thermomechanical aging models, laboratory simulations, and finite element analyses, the study identifies key stress distribution patterns and failure initiation zones associated with each material type. Zirconia and lithium disilicate ceramics exhibit high initial strength but suffer from phase transformations and stress-induced microcracking, while resin-based composites are prone to interfacial degradation, particularly under humid and thermal conditions. Porcelain-fused-to-metal restorations demonstrate vulnerabilities to thermal fatigue and delamination due to mismatched material interfaces. Innovations such as AI-assisted crown design, surface roughness optimization, and titanium base integration show promise in enhancing fatigue resistance across material classes. The findings underscore the limitations of conventional static testing and highlight the need for dynamic, multidirectional fatigue simulations to better predict clinical outcomes. This study provides critical insights for material selection and restorative design in prosthodontics, offering a scientific basis for improving the durability, functionality, and long-term success of dental restorations.
Downloads
References
Röhrle, O., H. Saini and D.C. Ackland, Occlusal loading during biting from an experimental and simulation point of view. Dental Materials, 2018. 34(1): pp. 58-68.
Körtvélyessy, G., et al., Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study. Materials, 2023. 16(5): p.1988.
Arola, D., Fatigue testing of biomaterials and their interfaces. Dental Materials, 2017. 33(2), pp.367–381.
Demirel, M.G., R. Mohammadi and M. Keçeci, Crack Propagation and Fatigue Performance of Partial Posterior Indirect Restorations: An Extended Finite Element Method Study. Journal of Functional Biomaterials, 2023.14(9): p. 484.
Dimitriadis, K., et al., Evaluation of robocasting process in the layering of dental feldspathic porcelain in metal‐ceramic restorations. International Journal of Applied Ceramic Technology, 2024. 21(2): pp. 702-714.
Yoo, H., et al., Synchrotron radiation‐based analysis of fatigue in dental restorative materials. Microscopy Research and Technique, 2020. 83(5): pp. 472-480.
Suresh, S., Fatigue of materials. 1998: Cambridge university press.
Warreth, A. and Y. Elkareimi, All-ceramic restorations: A review of the literature. The Saudi Dental Journal, 2020. 32(8): pp. 365-372.
Zarone, F., et al., Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health, 2019. 19(1).
Zhang, X., et al., Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymers, 2021.13(17): p. 2975.
Former Chief Dental Officer's return visit to University of Plymouth. British dental journal, 2024. 237(5): pp. 313-313.
Alqurashi, H., et al., Polyetherketoneketone (PEKK): An emerging biomaterial for oral implants and dental prostheses. JOURNAL OF ADVANCED RESEARCH, 2021. 28: pp. 87-95.
Valandro, L.F., et al., A brief review on fatigue test of ceramic and some related matters in Dentistry. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2023. 138: p. 13.
Ning, K., Yang, F., Bronkhorst, E., Ruben, J., Nogueira, L., Haugen, H., Loomans, B., & Leeuwenburgh, S., Fatigue behaviour of a self-healing dental composite. Dental Materials, 2023.39(10), pp.913 - 921.
Zhou, M. and Li, X., Flexural strength and fracture resistance of different dental ceramics. Journal of Prosthetic Dentistry, 2021.126(2), pp.1184–1192.
Jerman, E., Lümkemann, N., Eichberger, M., Hampe, R., & Stawarczyk, B., Impact of varying step - stress protocols on the fatigue behavior of 3Y - TZP, 4Y - TZP and 5Y - TZP ceramic. Dental Materials, 2021. 37(1), pp.xxx.e1–xxx.e10.
Rosentritt, M., Preis, V., Behr, M., & Strasser, T., Fatigue and wear behaviour of zirconia materials. Journal of the Mechanical Behavior of Biomedical Materials, 2020. 110, 103970.
Heidari, N., Amawi, R., Seweryniak, P., Bakitian, F., & Vult von Steyern, P., Fracture Resistance and Fracture Behaviour of Monolithic Multi-Layered Translucent Zirconia Fixed Dental Prostheses with Different Placing Strategies of Connector: An in vitro Study. Clinical, Cosmetic and Investigational Dentistry, 2022.14, pp.61–69.
Zamzam, H., Olivares, A., & Fok, A., Load capacity of occlusal veneers of different restorative CAD/CAM materials under lateral static loading. Journal of the Mechanical Behavior of Biomedical Materials, 2021.115, p.104290.
Triwatana, P., Nagaviroj, N., & Tulapornchai, C., Clinical performance and failures of zirconia - based fixed partial dentures: a review literature.Journal of Advanced Prosthodontics, 2012.4(2), pp.76–83.
Zhang, S., & Li, S., Analysis of the Clinical Research on the Loosening and Shedding of Zirconia Restorations. *Frontiers of Stomatology*, 2025. 30(5), pp.50–55.
Jerman, E., Lümkemann, N., Eichberger, M., Hampe, R., & Stawarczyk, B. Impact of varying step-stress protocols on the fatigue behavior of 3Y-TZP, 4Y-TZP and 5Y-TZP ceramic. Dental Materials, 2021.37, e11–e20.
Teixeira, H., Branco, A. C., Rodrigues, I., Silva, D., Cardoso, S., Colaço, R., Serro, A. P., & Figueiredo-Pina, C. G., Effect of albumin, urea, lysozyme and mucin on the triboactivity of Ti6Al4V/zirconia pair used in dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2021.118, 104451.
Pereira, G. K. R., Venturini, A. B., Silvestri, T., Dapieve, K. S., Montagner, A. F., Soares, F. Z. M., & Valandro, L. F., Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 55, pp.151–163.
Yilmaz, E. Ç., & Sadeler, R., A Literature Review on Chewing Simulation and Wear Mechanisms of Dental Biomaterials. *Journal of Bio- and Tribo-Corrosion*, 2021.7, pp.91.
Altier, M., Erol, F., Yıldırım, G. and Dalkilic, E.E., Fracture resistance and failure modes of lithium disilicate or composite endocrowns. Nigerian Journal of Clinical Practice, 2018.21(7), pp.896–901.
Belli, R., Geinzer, E., Muschweck, A., Petschelt, A., Lohbauer, U., Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater, 2014. 30(2), pp.424 - 432.
Harrison, P. and Mitchell, C.,. Fracture resistance of lithium disilicate crowns with different occlusal thicknesses. Journal of Esthetic and Restorative Dentistry, 2018.29(4), pp.1004X–1030.
Taha AI, Hafez ME. Effect of preparation design on fracture resistance of molars restored with occlusal veneers of different CAD-CAM materials: an in vitro study. BMC Oral Health, 2024.24, p.1168.
Abu-Izze, F. O., Ramos, G. F., Borges, A. L. S., et al., Fatigue behavior of ultrafine tabletop ceramic restorations. Dental Materials, 2018. 34(11), pp.1401 - 1409.
Zheng, Z., He, Y., Ruan, W., et al., Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. Journal of Prosthetic Dentistry, 2021.125(6), pp.890 - 899.
Adabo, G. L., Longhini, D., Baldochi, M. R., Bergamo, E. T. P., Bonfante, E. A., Fatigue failure of lithium disilicate and translucent zirconia crowns with different occlusal thicknesses. Clinical Oral Investigations, 2022. 27 (5), pp.1737 - 1746.
Pereira-Cenci T, Cenci MS, Loguercio AD, et al. Wear mechanisms of flowable resin composites submitted to cyclic impact loading [J]. Dental Materials Journal, 2014. 33 (6): pp. 825-831.
Lohbauer U, Belli R, Ferracane JL., Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. J Dent Res, 2013.92(7), pp. 584 - 591.
Drummond JL. Degradation, Fatigue, and Failure of Resin Dental Composite Materials. J Dent Res, 2008.87(8), pp. 710 - 719.
Ferracane JL., Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater, 2006.22(3), pp. 211 - 222.
Im, S.M., Huh, Y.H., Cho, L.R. and Park, C.J., Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading. The Journal of Advanced Prosthodontics , 2017.9(1), pp. 22 - 30.
Weiser F, Behr M., Self - Adhesive Resin Cements: A Clinical Review. Journal of Prosthodontics, 2015.24(2), pp. 100 - 108.
Gu Y, Liu H, Li M, et al., Macro - and micro - interfacial properties of carbon fiber reinforced epoxy resin composite under hygrothermal treatments. Journal of Reinforced Plastics and Composites, 2014. 33(4), pp. 369 - 379.
Ferracane, J.L., Lawson, N.C., Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restoration using current materials. J Esthet Restor Dent, 2021.33, pp.39 - 50.
Mejri, M., Toubal, L., Cuillière, J.-C., & François, V., Hygrothermal aging effects on mechanical and fatigue behaviors of a short-natural-fiber-reinforced composite. International Journal of Fatigue, 2017.108, pp.146–157.
Altier M, Erol F, Yildirim G, Dalkilic EE. Fracture resistance and failure modes of lithium disilicate or composite endocrowns. Niger J Clin Pract, 2018.21, pp.821-826.
Ning, K., Yang, F., Bronkhorst, E., Ruben, J., Nogueira, L., Haugen, H., Loomans, B., & Leeuwenburgh, S., Fatigue behaviour of a self-healing dental composite. Dental Materials, 2023.39(10), pp.913 - 921.
Jamal, S., Ghafoor, R., Khan, F. R., & Zafar, K., . Five year evaluation of the complications observed in porcelain fused to metal (PFM) crowns placed at a university hospital. JPMA. The Journal of the Pakistan Medical Association, 2020.70(5), pp.845 - 850.
Newaskar, P., Sonkesriya, S., Singh, R., Palekar, U., Bagde, H., Dhopte, A., Evaluation and Comparison of Five-Year Survival of Tooth-Supported Porcelain Fused to Metal and All-Ceramic Multiple Unit Fixed Prostheses: A Systematic Review. Cureus, 2022.14(10), pp.e30338.
Ding H, Cui Z, Maghami E, et al. Morphology and mechanical performance of dental crown designed by 3D-DCGAN. Dent Mater, 2023.39, pp.320-332.
Zhang, Y., Lawn, B.R., Novel Zirconia Materials in Dentistry. Journal of Dental Research, 2017.97 (2).
Yan, X., Dong, S., Li, X., Zhao, Z., Dong, S., & An, L., Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool. Materials, 2022.15(1), pp.208.
Wallum, A. J., Raimondi, C., Lien, W., Hoopes, W. L., & Vandewalle, K. S., Effect of Milling Speed on the Properties of Zirconia Restorations. J Clin Exp Dent, 2024.16(1), pp.e84 - e89.
Mascenik, J., Coranic, T., Kuchar, J., & Hazdra, Z., Influence of Selected Parameters of Zinc Electroplating on Surface Quality and Layer Thickness. Coatings, 2024.14(5), pp.579.
Duplák, J., Mikuláško, S., Dupláková, D., Yeromina, M., Kašˇcák, R., Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application. Biomimetics, 2024.9(8), pp.473
Elsayed, A., Wille, S., Al-Akhali, M., & Kern, M., Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clinical Oral Implants Research, 2018. 29(1), pp.20–27.
Lu¨thy H, Loeffel O, Hammerle CHF., Effect of thermocycling on bond strength of luting cements to zirconia ceramic[J]. Dental Materials, 2006, 22(2): 195 - 200.
Malysa A, Wezgowiec J, Grzebieluch W, et al., Effect of Thermocycling on the Bond Strength of Self - Adhesive Resin Cements Used for Luting CAD/CAM Ceramics to Human Dentin[J]. International Journal of Molecular Sciences, 2022, 23(2): 745.
Yilmaz EC, Sadeler R., Investigation of two- and three-body wear resistance on fowable bulk-fll and resin-based composites. Mech Compos Mater,2018.54(3):395–402
Yilmaz EC, Sadeler R., Investigation of three-body wear of dental materials under diferent chewing cycles. Sci Eng Comp Mater, 2018.25(4):781–787
Koot tathape, N., Takahashi, H., Iwasaki, N., Kanehira, M., Finger, W. J., Quantitative wear and wear damage analysis of composite resins in vitro. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 29, pp.508 - 516.
Yilmaz, E. Ç., & Sadeler, R., A Literature Review on Chewing Simulation and Wear Mechanisms of Dental Biomaterials. Journal of Bio- and Tribo-Corrosion,2021.7, pp.91.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.