Prediction Of Alzheimer's Disease Using Health Records and Machine Learning Based Framework

Authors

  • Shimpy Harbhajanka Goyal
  • Anusha Jain
  • Priyanka Dhasal
  • Sonal Modh Bhardwaj

Keywords:

Alzheimer’s Disease, ADRD, Machine Learning, EHR, Gradient Boosted Trees, Predictive Modeling, SHAP Analysis, Dementia Risk, Early Diagnosis

Abstract

Alzheimer’s Disease and Related Dementias (ADRD) are progressive neurodegenerative disorders posing significant social, clinical, and economic burdens. This study aims to enhance early diagnosis of ADRD using advanced machine learning (ML) models applied to longitudinal electronic health record (EHR) data from the University of Missouri Healthcare system. We evaluated six ML algorithms—Gradient Boosted Trees (GBT), Light Gradient Boosting Machine (LightGBM), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), and AdaBoost—over varying prediction windows from one to five years. The dataset included 123,735 patients aged 50 and above, with 4012 diagnosed cases of ADRD. A comprehensive set of demographics, clinical, and behavioural features were extracted and pre-processed to train the models. Among all models, GBT demonstrated the highest predictive accuracy, achieving an AUC of 0.833 in the five-year prediction window. SHAP (SHapley Additive exPlanations) analysis revealed key risk factors such as depression, age groups (70–80 and 80–90), sleep apnoea, and cardiovascular diseases. These results suggest that ML models, especially GBT, can provide high-performing, interpretable tools for early ADRD detection, informing clinical decision-making and enabling timely intervention strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004;430 (7000):631–9.

Kavitha C, Mani V, Srividhya SR, Khalaf OI, Tavera Romero CA. Early-stage Alzheimer’s disease prediction using machine learning models. Front Public Heal 2022;10(March):1–13.

Šerý O, Povová J, Míšek I, Pešák L, Janout V. Molecular mechanisms of neuropatho- logical changes in Alzheimer’s disease: a review. Folia Neuropathol 2013;51(1):1–9.

Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement [Internet] 2018;14(4):535–62 Disponible a. doi: 10.1016/j.jalz.2018.02.018.

Hammond TC, Xing X, Wang C, Ma D, Nho K, Crane PK, et al. ????-amyloid

and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline. Commun Biol [Internet] 2020;3(1):1–13 Disponible a. doi:10.1038/s42003-020-1079-x.

Chang CH, Lin CH, Lane HY. Machine learning and novel biomarkers for the diag- nosis of alzheimer’s disease. Int J Mol Sci 2021;22(5):1–12.

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the Na- tional Institute on Aging-Alzheimer’s Association workgroups on diagnostic guide- lines for Alzheimer’s disease. Alzheimer’s Dement 2011;7(3):280–92.

Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amy- loid ???? deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol [Internet] 2013;12(4):357–67 Disponible a. doi:10.1016/S1474-4422(13)70044-9.

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the Na- tional Institute on Aging-Alzheimer’s Association workgroups on diagnostic guide- lines for Alzheimer’s disease. Alzheimer’s Dement 2011;7(3):263–9.

Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med 2014;275(3):214–28.

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The di- agnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diag- nostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 2011;7(3):270–9.

Alzheimer’s Association Report2022 Alzheimer’s disease facts and figures. Alzheimer’s Dement 2022;18(4):700–89.

Alzheimer’s Association Report2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement 2023;19(4):1598–695.

Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM. Monetary costs of de- mentia in the United States. N Engl J Med 2013;368(14):1326–34.

Zhang R, Simon G, Yu F. Advancing Alzheimer’s research: a review of big data promises. Int J Med Inform [Internet] 2017; 106:48–56 June 2016Disponible a. doi: 10.1016/j.ijmedinf.2017.07.002.

Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, et al. The world- wide costs of dementia 2015 and comparisons with 2010. Alzheimer’s Dement 2017;13(1):1–7.

Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014;6(4):37.

Hampel H, Shaw LM, Aisen P, Chen C, Lleó A, Iwatsubo T, et al. State-of-the-art of lumbar puncture and its place in the journey of patients with Alzheimer’s disease. Alzheimer’s Dement 2022;18(1):159–77.

Alzheimer’s Association Report 2020Alzheimer’s disease facts and figures 2020. Alzheimer’s Dement 2020;16(3):391–460.

Barthold D., Joyce G., Ferido P., Drabo E.F., Marcum Z.A., Gray S.L., et al. Pharma- ceutical treatment for Alzheimer’ s disease and related dementias: utilization and disparities. 2020; 76:579–89.

Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 2013;6(1):19–33.

.

Downloads

Published

2025-05-21

How to Cite

1.
Goyal SH, Jain A, Dhasal P, Bhardwaj SM. Prediction Of Alzheimer’s Disease Using Health Records and Machine Learning Based Framework. J Neonatal Surg [Internet]. 2025May21 [cited 2025Oct.1];14(26S):66-77. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6243