A Review on Biomatrix Tablets with Natural Polymers

Authors

  • Pratibha
  • Ridhima Sharma
  • Unnati Rajput
  • N.G. Raghavendra Rao

Keywords:

Controlled release, Matrix tablets, Agar, Sodium Alginate, Biopolymer, Natural Polymer

Abstract

The creation of controlled release systems enables drugs to be delivered at a specific and expected rate in a programmed manner, thereby regulating the optimal concentration and ensuring a consistent concentration at a particular site or receptor. Matrix tablets represent a widely used type of controlled release drug delivery system, which releases medication through mechanisms of diffusion or dissolution control. The active ingredients are evenly integrated within the material that regulates the release rate, for example, polymers can be hydrophilic, plastic, lipid-based, or composed of minerals, among others. Polymer can be  either man-made or naturally-derived, but the appeal of natural polymers in pharmaceutical uses lies in their cost-effectiveness, accessibility, and non-toxic nature. Chitosan, alginate, starch, and collagen are examples of naturally occurring polymers that are used in tissue engineering matrix, regenerative pharmaceuticals, detergents, adhesives, packaging, biodegradable plastics, textiles, and rubber. Because they are relatively safe, biocompatible, and readily metabolized by the body's enzymes. Biopolymers are the organic materials derived from natural sources. Because the biopolymers are biocompatible and biodegradable, they have various uses, including in the food industry. for edible films and emulsions, as well as in the pharmaceutical industry for tissue scaffolds, wound healing, dressing materials, drug transport materials, and medical implants such as organs. Since natural polymers are essentially polysaccharides, they have no negative effects and are biocompatible. The advantages of natural polymers over synthetic ones, as well as their use in creating innovative drug delivery systems, are covered in this paper.

Downloads

Download data is not yet available.

References

Swaleh MM, Syed IA, Maqsood MA, Shehnaz S. A Detailed Review on Oral Controlled Release Matrix Tablets. Int. J. Pharm. Sci. Rev. Res. 2020;64:27-38.

Mishra DrMK. A REVIEW ARTICLE ON THE ORAL DOSAGE FORM: TABLETS. World J Pharm Res. 2017;

Kohrs NJ, Liyanage T, Venkatesan N, Najarzadeh A, Puleo DA. Drug delivery systems and controlled release. In: Encyclopedia of Biomedical Engineering. 2019.

Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Advanced drug delivery reviews. 2018 Jul 1;132:104-38..

Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. Journal of controlled release. 2012 Jul 20;161(2):351-62.

Gupta PK, Robinson JR. Oral controlled-release delivery. Treatise on controlled drug delivery. 2017 Oct 2:255-313..

Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts: BI. 2012;2(4):175.

Bose S, Kaur A. A review on advances of sustained release drug delivery system. The International Research Journal of Pharmacy. 2013 Jun 6;4(6):29-33.

Aghabegi Moghanjoughi A, Khoshnevis D, Zarrabi A. A concise review on smart polymers for controlled drug release. Drug delivery and translational research. 2016 Jun;6:333-40.

Li L, Zhang X, Gu X, Mao S. Applications of natural polymeric materials in solid oral modified-release dosage forms. Current Pharmaceutical Design. 2015 Dec 1;21(40):5854-67.

James HP, John R, Alex A, Anoop K. Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharmaceutica Sinica B. 2014 Apr 1;4(2):120-7.

Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annual review of chemical and biomolecular engineering. 2010 Jul 15;1(1):149-73..

Nokhodchi A, Asare-Addo K. Drug release from matrix tablets: physiological parameters and the effect of food. Expert opinion on drug delivery. 2014 Sep 1;11(9):1401-18.

Lu Y, Kim S, Park K. In vitro–in vivo correlation: Perspectives on model development. International journal of pharmaceutics. 2011 Oct 10;418(1):142-8..

Yun YH, Lee BK, Park K. Controlled Drug Delivery: Historical perspective for the next generation. Journal of Controlled Release. 2015 Dec 10;219:2-7.

Kulkarni Vishakha S, Butte Kishor D, Rathod Sudha S. Natural polymers–A comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 2012 Oct;3(4):1597-613.

Satturwar PM, Fulzele SV, Dorle AK. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. Aaps Pharmscitech. 2003 Dec;4:434-9.

Lam KS. New aspects of natural products in drug discovery. Trends in microbiology. 2007 Jun 1;15(6):279-89.

McChesney JD, Venkataraman SK, Henri JT. Plant natural products: back to the future or into extinction?. Phytochemistry. 2007 Jul 1;68(14):2015-22.

Pandey R, Khuller GK. Polymer based drug delivery systems for mycobacterial infections. Current drug delivery. 2004 Jul 1;1(3):195-201.

Chamarthy SP, Pinal R. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008 Dec 10;331(1-2):25-30.

Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics. 2009 Jun 1;72(2):453-62.

Guo JH, Skinner GW, Harcum WW, Barnum PE. Pharmaceutical applications of naturally occurring water-soluble polymers. Pharmaceutical science & technology today. 1998 Sep 1;1(6):254-61.

Jani GK, Shah DP, Prajapati VD, Jain VC. Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci. 2009;4(5):309-23.

Shirwaikar A, Shirwaikar A, Prabu SL, Kumar GA. Herbal excipients in novel drug delivery systems. Indian journal of pharmaceutical sciences. 2008 Jul;70(4):415.

Adeleye OA, Bamiro OA, Albalawi DA, Alotaibi AS, Iqbal H, Sanyaolu S, Femi-Oyewo MN, Sodeinde KO, Yahaya ZS, Thiripuranathar G, Menaa F. Characterizations of alpha-cellulose and microcrystalline cellulose isolated from cocoa pod husk as a potential pharmaceutical excipient. Materials. 2022 Aug 30;15(17):5992.

Adel AM, El-Shinnawy NA. Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues. International journal of biological macromolecules. 2012 Dec 1;51(5):1091-102.

Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical reviews. 2016 Aug 24;116(16):9305-74.

Du H, Liu W, Zhang M, Si C, Zhang X, Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydrate polymers. 2019 Apr 1;209:130-44.

French AD. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose. 2017 Nov;24:4605-9.

Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydrate polymers. 2018 Mar 15;184:164-70.

Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition. 2005 May 30;44(22):3358-93.

Shokri J, Adibkia K. Application of cellulose and cellulose derivatives in pharmaceutical industries. InCellulose-medical, pharmaceutical and electronic applications 2013 Aug 29. IntechOpen.

Ullah H, Santos HA, Khan T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose. 2016 Aug;23:2291-314.

Osorno DM, Castro C. Cellulose application in food industry: A review. Emergent Research on Polymeric and Composite Materials. 2018:38-77.

Bianchet RT, Cubas AL, Machado MM, Moecke EH. Applicability of bacterial cellulose in cosmetics–bibliometric review. Biotechnology Reports. 2020 Sep 1;27:e00502.

Trache D, Thakur VK, Boukherroub R. Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications. Nanomaterials. 2020 Aug 4;10(8):1523.

Mittal A, Katahira R, Himmel ME, Johnson DK. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnology for biofuels. 2011 Dec;4:1-6.

O'sullivan AC. Cellulose: the structure slowly unravels. Cellulose. 1997 Sep;4(3):173-207.

Rivai H, Hamdani AS, Ramdani R, Lalfari RS, Andayani R, Armin F, Djamaan A. Production and characterization of alpha cellulose derived from rice straw (Oryza sativa L.). Int. J. Pharm. Sci. Rev. Res. 2018, 52, 45–48

Nsor-Atindana J, Chen M, Goff HD, Zhong F, Sharif HR, Li Y. Functionality and nutritional aspects of microcrystalline cellulose in food. Carbohydrate polymers. 2017 Sep 15;172:159-74.

Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. International journal of pharmaceutics. 2014 Oct 1;473(1-2):64-72.

Adedokun M, Essien GE, Uwah T, Romanus AU, Josiah I, Jackson C. Evaluation of the release properties of microcrystalline cellulose derived from Saccharum officinarum L. in paracetamol tablet formulation. J. Pharm. Sci. Res. 2014;6(10):342-6..

Belali NG, Chaerunisaa AY, Rusdiana T. Isolation and characterization of microcrystalline cellulose derived from plants as excipient in tablet: A review. Indonesian J. Pharm. 2019;1:23-9.

Conti S, Maggi L, Segale L, Machiste EO, Conte U, Grenier P, Vergnault G. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. International Journal of Pharmaceutics. 2007 Mar 21;333(1-2):136-42..

Jamzad S, Fassihi R. Development of a controlled release low dose class II drug-Glipizide. International journal of pharmaceutics. 2006 Apr 7;312(1-2):24-32.

Aguilera JM, Stanley DW. Microstructural principles of food processing and engineering. Springer Science & Business Media; 1999 Sep 30.

Cosgrove DJ. Growth of the plant cell wall. Nature reviews molecular cell biology. 2005 Nov 1;6(11):850-61.

Sharma S, Wadhwa N. Application of glucomannan. group. 2022;6(38):39.

Marzio L, Del Bianco R, Pieramico O, Cuccurullo F. Mouth-to-cecum transit time in patients affected by chronic constipation: effect of glucomannan. American Journal of Gastroenterology (Springer Nature). 1989 Aug 1;84(8).

Alvarez-Manceñido F, Landin M, Lacik I, Martínez-Pacheco R. Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs. International Journal of Pharmaceutics. 2008 Feb 12;349(1-2):11-8.

Fan J, Wang K, Liu M, He Z. In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydrate Polymers. 2008 Jul 19;73(2):241-7.

Wen X, Wang T, Wang Z, Li L, Zhao C. Preparation of konjac glucomannan hydrogels as DNA-controlled release matrix. International journal of biological macromolecules. 2008 Apr 1;42(3):256-63..

Liu M, Fan J, Wang K, He Z. Synthesis, characterization, and evaluation of phosphated cross-linked konjac glucomannan hydrogels for colon-targeted drug delivery. Drug Delivery. 2007 Jan 1;14(6):397-402.

Dungarwal UN, Atish SM. Comprehensive overview of Natural Superdisintegrants. International Research Journal of Pharmaceutical and Biosciences. 2021;5:7.

Anand N, Singh L, Sharma V. Emergence of natural super-disintegrants in oro-dispersible tablets: an overview. Int Res J Pharm. 2013 Apr 1;4(8):33-7.

Sunitha HS, Parthiban S, Senthil Kumar G. Recent review on technological advancement and the use of natural superdisintegrant in the formulation of fast Disintegrating tablet. Asian Journal of Research in Pharmaceutical Sciences and Biotechnology. 2014;2(2):31-7.

Kokate C, Purohit A and Gokhale S A Text book of Pharmacognosy, Nirali Prakashan, 29th edn. Pune, Mumbai, 2009; 152-153.

Bhardwaj P, Chauhan SB. Formulation and evaluation of orodispersible tablets of metformin hydrochloride using agar as natural super disintegrant. International Journal of Pharmaceutical Sciences and research. 2018 Oct 1;9(10):4220-8.

Trease G.E., Evans W.C., Text Book of Pharmacognosy, 15th ed. London: Balliere, Tindall; 2002. p. 200-201.

Te Wierik GH, Eissens AC, Bergsma J, Arends-Scholte AW, Bolhuis GK. A new generation starch product as excipient in pharmaceutical tablets: III. Parameters affecting controlled drug release from tablets based on high surface area retrograded pregelatinized potato starch. International journal of pharmaceutics. 1997 Nov 28;157(2):181-7.

Chen L, Li X, Li L, Guo S. Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Current Applied Physics. 2007 Apr 1;7:e90-3.

Brouillet F, Bataille B, Cartilier L. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation. International journal of pharmaceutics. 2008 May 22;356(1-2):52-60..

Larionova NV, Ponchel G, Duchene D, Larionova NI. Biodegradable cross-linked starch/protein microcapsules containing proteinase inhibitor for oral protein administration. International journal of pharmaceutics. 1999 Nov 5;189(2):171-8.

Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. International journal of pharmaceutics. 2001 Aug 14;224(1-2):19-38.

Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New phytologist. 2004 Mar;161(3):641-75..

Cárdenas A, Goycoolea FM, Rinaudo M. On the gelling behaviour of ‘nopal’(Opuntia ficus indica) low methoxyl pectin. Carbohydrate Polymers. 2008 Jul 19;73(2):212-22.

Musabayane CT, Munjeri O, Matavire TP. Transdermal delivery of chloroquine by amidated pectin hydrogel matrix patch in the rat. Renal failure. 2003 Jan 1;25(4):525-34.

Apolinário AC, de Lima Damasceno BP, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate polymers. 2014 Jan 30;101:368-78.

Wichienchot S, Thammarutwasik P, Jongjareonrak A, Chansuwan W, Hmadhlu P, Hongpattarakere T, Itharat A, Ooraikul B. Extraction and analysis of prebiotics from selected plants from southern Thailand. Songklanakarin Journal of Science & Technology. 2011 Sep 1;33(5).

Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. International Journal of Pharmaceutical Excipients. 2016 Nov 23;1(3).

Muhammad Saeed MS, Iqra Yasmin IY, Imran Pasha IP, Randhawa MA, Khan MI, Shabbir MA, Khan WA. Potential application of inulin in food industry; a review.

Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules. 2009 Jul 16;14(7):2602-20.

Lopes SM, Krausová G, Rada V, Gonçalves JE, Gonçalves RA, de Oliveira AJ. Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.) Bertoni. Carbohydrate research. 2015 Jun 26;411:15-21.

Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate polymers. 2015 Oct 5;130:405-19.

Wada T, Sugatani J, Terada E, Ohguchi M, Miwa M. Physicochemical characterization and biological effects of inulin enzymatically synthesized from sucrose. Journal of Agricultural and Food Chemistry. 2005 Feb 23;53(4):1246-53.

Doyle JP, Lyons G, Morris ER. New proposals on “hyperentanglement” of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocolloids. 2009 Aug 1;23(6):1501-10.

Coviello T, Alhaique F, Dorigo A, Matricardi P, Grassi M. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. European Journal of Pharmaceutics and Biopharmaceutics. 2007 May 1;66(2):200-9.

Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. Journal of controlled release. 2006 Aug 10;114(1):15-40.

Varshosaz J, Tavakoli N, Eram SA. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug delivery. 2006 Jan 1;13(2):113-9.

Dürig T, Fassihi R. Guar-based monolithic matrix systems: effect of ionizable and non-ionizable substances and excipients on gel dynamics and release kinetics. Journal of controlled release. 2002 Apr 23;80(1-3):45-56.

Krishnaiah YS, Karthikeyan RS, Bhaskar P, Satyanarayana V. Bioavailability studies on guar gum-based three-layer matrix tablets of trimetazidine dihydrochloride in human volunteers. Journal of controlled release. 2002 Oct 4;83(2):231-9.

Krishnaiah YS, Karthikeyan RS, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. International Journal of Pharmaceutics. 2002 Jul 25;241(2):353-66.

Al-Saidan SM, Krishnaiah YS, Satyanarayana V, Rao GS. In vitro and in vivo evaluation of guar gum-based matrix tablets of rofecoxib for colonic drug delivery. Current Drug Delivery. 2005 Apr 1;2(2):155-63.

Glicksman M., Mrak E.M., Stewart G.F., Utilization of natural polysaccharide gums in the food industry, In Advances in food research. Academic Press: New York, NY, USA. p. 110-191.

Sujja-Areevath J, Munday DL, Cox PJ, Khan KA. Release characteristics of diclofenac sodium from encapsulated natural gum mini-matrix formulations. International Journal of Pharmaceutics. 1996 Aug 9;139(1-2):53-62.

Vendruscolo CW, Andreazza IF, Ganter JL, Ferrero C, Bresolin TM. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. International journal of pharmaceutics. 2005 May 30;296(1-2):1-1.

Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug development and industrial pharmacy. 2000 Jan 1;26(10):1025-38.

Ramakrishnan A, Pandit N, Badgujar M, Bhaskar C, Rao M. Encapsulation of endoglucanase using a biopolymer Gum Arabic for its controlled release. Bioresource technology. 2007 Jan 1;98(2):368-72.

Lu EX, Jiang ZQ, Zhang QZ, Jiang XG. A water-insoluble drug monolithic osmotic tablet system utilizing gum arabic as an osmotic, suspending and expanding agent. Journal of controlled release. 2003 Oct 30;92(3):375-82.

Batra V, Bhowmick A, Behera BK, Ray AR. Sustained release of ferrous sulfate from polymer‐coated gum arabica pellets. Journal of pharmaceutical sciences. 1994 May;83(5):632-5.

Munday DL, Cox PJ. Compressed xanthan and karaya gum matrices: hydration, erosion and drug release mechanisms. International journal of Pharmaceutics. 2000 Aug 1;203(1-2):179-92.

Park CR, Munday DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug development and industrial pharmacy. 2004 Jan 1;30(6):609-17.

Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. International Journal of Biological Macromolecules. 2023 Jun 30;241:124343.

Barak S, Mudgil D, Taneja S. Exudate gums: chemistry, properties and food applications–a review. Journal of the Science of Food and Agriculture. 2020 May;100(7):2828-35.

Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003 Nov 1;63(1):10–21.

Anderson DMW. Evidence for the safety of gum tragacanth (Asiatic Astragalus spp.) and modern criteria for the evaluation of food additives. Food Addit Contam. 1989 Jan;6(1):1–12.

Imeson A, editor. Food Stabilisers, Thickeners and Gelling Agents. Wiley; 2009.

Zohuriaan MJ, Shokrolahi FJ. Thermal studies on natural and modified gums. Polymer testing. 2004 Aug 1;23(5):575-9.

Nur M, Ramchandran L, Vasiljevic T. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion. Carbohydrate polymers. 2016 Jun 5;143:223-30.

Singh B, Sharma V. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydrate polymers. 2014 Jan 30;101:928-40.

Siahi MR, Barzegar-Jalali M, Monajjemzadeh F, Ghaffari F, Azarmi S. Design and evaluation of 1-and 3-layer matrices of verapamil hydrochloride for sustaining its release. Aaps PharmSciTech. 2005 Dec;6:E626-32.

Eastwood MA, Brydon WG, Anderson DM. The effects of dietary gum tragacanth in man. Toxicology letters. 1984 Apr 1;21(1):73-81.

Eastwood MA, Brydon WG, Anderson DM. The effect of the polysaccharide composition and structure of dietary fibers on cecal fermentation and fecal excretion. The American journal of clinical nutrition. 1986 Jul 1;44(1):51-5.

Berg E. A clinical comparison of four denture adhesives. International Journal of Prosthodontics. 1991 Sep 1;4(5).

Nuttall FQ. Dietary fiber in the management of diabetes. Diabetes. 1993 Apr 1;42(4):503-8.

Ni Y, Tizard IR. Analytical methodology: the gel-analysis of aloe pulp and its derivatives. InAloes 2004 Jan 23 (pp. 129-144). CRC Press.

Jani GK, Shah DP, Jain VC, Patel MJ, Vithalani DA. Evaluating mucilage from Aloe Barbadensis Miller as a pharmaceutical excipient for sustained-release matrix tablets.

Hamman JH. Composition and applications of Aloe vera leaf gel. Molecules. 2008 Aug 8;13(8):1599-616.

Iber BT, Kasan NA, Torsabo D, Omuwa JW. A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials. 2022;10(4):1097.

Akila RM. Fermentative production of fungal chitosan, a versatile biopolymer (perspectives and its applications). Adv Appl Sci Res. 2014;5(4):157-70.

Islam S, Bhuiyan MR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment. 2017 Sep;25:854-66.

Abo Elsoud MM, El Kady EM. Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre. 2019 Dec;43(1):1-2.

Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovský A, Burgert L, Aly AS. Antibacterial cotton fabrics treated with core–shell nanoparticles. International journal of biological macromolecules. 2012 Jun 1;50(5):1245-53.

Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO. Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food biophysics. 2014 Jun;9:145-57.

Kaya M, Baublys V, Can E, Šatkauskienė I, Bitim B, Tubelytė V, Baran T. Comparison of physicochemical properties of chitins isolated from an insect (Melolontha melolontha) and a crustacean species (Oniscus asellus). Zoomorphology. 2014 Sep;133:285-93.

Hahn T, Roth A, Ji R, Schmitt E, Zibek S. Chitosan production with larval exoskeletons derived from the insect protein production. Journal of Biotechnology. 2020 Feb 20;310:62-7.

Kaya M, Baublys V, Šatkauskienė I, Akyuz B, Bulut E, Tubelytė V. First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International journal of biological macromolecules. 2015 Aug 1;79:126-32.

Kaya M, Sargin I, Tozak KÖ, Baran T, Erdogan S, Sezen G. Chitin extraction and characterization from Daphnia magna resting eggs. International journal of biological macromolecules. 2013 Oct 1;61:459-64.

Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. European Journal of Pharmaceutical Sciences. 2001 Oct 1;14(3):201-7.

Venkatesan J, Nithya R, Sudha PN, Kim SK. Role of alginate in bone tissue engineering. Advances in food and nutrition research. 2014 Jan 1;73:45-57.

Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BH. Microbial alginate production, modification and its applications. Microbial biotechnology. 2013 Nov;6(6):637-50.

Tipton PA. Synthesis of alginate in bacteria.

Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. International journal of polymer science. 2016;2016(1):7697031. 125.

Rajinikanth P, Sankar C, Mishra B. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery: development and evaluation. Drug delivery. 2003 Jan 1;10(1):21-8.

Pandey R, Ahmad Z, Sharma S, Khuller GK. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. International journal of pharmaceutics. 2005 Sep 14;301(1-2):268-76.

Picker KM. Matrix tablets of carrageenans. I. A compaction study. Drug development and industrial pharmacy. 1999 Jan 1;25(3):329-37.

Mohamadnia ZZ, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H. Ionically cross-linked carrageenan-alginate hydrogel beads. Journal of Biomaterials Science, Polymer Edition. 2008 Jan 1;19(1):47-59.

Kulkarni GT, Gowthamarajan K, Rao BG, Suresh B. Evaluation of binding properties of Plantago ovata and Trigonella foenum graecum mucilages. Indian drugs. 2002;39(8):422-5.

Singh B, Chauhan N, Kumar S. Radiation cross-linked psyllium and polyacrylic acid based hydrogels for use in colon specific drug delivery. Carbohydrate polymers. 2008 Aug 1;73(3):446-55.

Singh B, Chauhan N. Modification of psyllium polysaccharides for use in oral insulin delivery. Food Hydrocolloids. 2009 May 1;23(3):928-35.

Chavanpatil MD, Jain P, Chaudhari S, Shear R, Vavia PR. Novel sustained release, swellable and bioadhesive gastro-retentive drug delivery system for ofloxacin. International journal of pharmaceutics. 2006 Jun 19;316(1-2):86-92.

Gohel MC, Amin AF, Patel KV, Panchal MK. Studies in release behavior of diltiazem HCl from matrix tablets containing (hydroxyl propyl) methyl cellulose and xanthan gum. Bollettino Chimico Farmaceutico. 2002 Jan 1;141(1):21-8.

Baranwal J, Barse B, Fais A, Delogu GL, Kumar A. Biopolymer: A sustainable material for food and medical applications. Polymers. 2022 Feb 28;14(5):983.

Ezeoha SL, Ezenwanne JN. Production of biodegradable plastic packaging film from cassava starch. IOSR Journal of Engineering. 2013 Oct;3(10):14-20.

Stryer L, Berg JM, Tymoczko JL. Biochemistry And Study Guide.

Gullapalli S, Wong MS. Nanotechnology: a guide to nano-objects. Chemical Engineering Progress. 2011 May 1;107(5):28-32.

Ruso JM, Messina PV, editors. Biopolymers for medical applications. CRC Press; 2017 Feb 17.

Siracusa V, Rocculi P, Romani S, Dalla Rosa M. Biodegradable polymers for food packaging: a review. Trends in food science & technology. 2008 Dec 1;19(12):634-43.

Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F. Application of bioplastics for food packaging. Trends in Food Science & Technology. 2013 Aug 1;32(2):128-41.

Tanamool V, Imai T, Danvirutai P, Kaewkannetra P. An alternative approach to the fermentation of sweet sorghum juice into biopolymer of poly-β-hydroxyalkanoates (PHAs) by newly isolated, Bacillus aryabhattai PKV01. Biotechnology and bioprocess engineering. 2013 Feb;18:65-74.

Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y. Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C‐labelled maize residues and on their stabilization in soil aggregates. European journal of soil science. 2013 Aug;64(4):488-99.

Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Fama LM. Physicochemical and functional properties of native and modified by crosslinking, dark-cush-cush yam (Dioscorea Trifida) and cassava (Manihot Esculenta) starch.

Karmanov AP, Kanarsky AV, Kocheva LS, Belyy VA, Semenov EI, Rachkova NG, Bogdanovich NI, Pokryshkin SA. Chemical structure and polymer properties of wheat and cabbage lignins–Valuable biopolymers for biomedical applications. Polymer. 2021 Apr 2;220:123571.

Redondo-Gómez C, Rodríguez Quesada M, Vallejo Astúa S, Murillo Zamora JP, Lopretti M, Vega-Baudrit JR. Biorefinery of biomass of agro-industrial banana waste to obtain high-value biopolymers. Molecules. 2020 Aug 23;25(17):3829.

Perotti GF, Tronto J, Bizeto MA, Izumi C, Temperini ML, Lugão AB, Parra DF, Constantino VR. Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. Journal of the Brazilian Chemical Society. 2014;25:320-30.

Abral H, Dalimunthe MH, Hartono J, Efendi RP, Asrofi M, Sugiarti E, Sapuan SM, Park JW, Kim HJ. Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch‐Stärke. 2018 Jul;70(7-8):1700287.

Borah PP, Das P, Badwaik LS. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrasonics sonochemistry. 2017 May 1;36:11-9.

Aguilar NM, Arteaga-Cardona F, de Anda Reyes ME, Gervacio-Arciniega JJ, Salazar-Kuri U. Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemistry and Physics. 2019 Dec 1;238:121921.

Lauer MK, Tennyson AG, Smith RC. Inverse vulcanization of octenyl succinate-modified corn starch as a route to biopolymer–sulfur composites. Materials Advances. 2021;2(7):2391-7.

Yu P. Molecular chemical structure of barley proteins revealed by ultra‐spatially resolved synchrotron light sourced FTIR microspectroscopy: Comparison of barley varieties. Biopolymers: Original Research on Biomolecules. 2007 Mar;85(4):308-17.

Flaris V, Singh G. Recent developments in biopolymers. Journal of Vinyl and Additive Technology. 2009 Mar;15(1):1-1.

Mojaveryazdi FS, Muhamad II, Rezania S, Benham H. Importance of glucose and Pseudomonas in producing degradable plastics. Jurnal Teknologi. 2014 Jul 2;69(5).

Mostafavi FS, Zaeim D. Agar-based edible films for food packaging applications-A review. International journal of biological macromolecules. 2020 Sep 15;159:1165-76.

Ruelas-Chacon X, Aguilar-González A, de la Luz Reyes-Vega M, Peralta-Rodríguez RD, Corona-Flores J, Rebolloso-Padilla ON, Aguilera-Carbo AF. Bioactive protecting coating of guar gum with thyme oil to extend shelf life of tilapia (Oreoschromis niloticus) fillets. Polymers. 2020 Dec 17;12(12):3019.

Singh RS, Kaur N, Kennedy JF. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydrate polymers. 2019 Aug 1;217:46-57.

BeMiller JN. Xanthan. In: Carbohydrate Chemistry for Food Scientists. Elsevier; 2019. p. 261–9.

Thakur BR, Singh RK, Handa AK, Rao MA. Chemistry and uses of pectin—A review. Critical Reviews in Food Science & Nutrition. 1997 Feb 1;37(1):47-73.

Višić K, Pušić T, Čurlin M. Carboxy methyl cellulose and carboxy methyl starch as surface modifiers and greying inhibitors in washing of cotton fabrics. Polymers. 2021 Apr 6;13(7):1174.

Mirzaei M, Alimi M, Shokoohi S, Golchoobi L. Synergistic interactions between konjac‐mannan and xanthan/tragacanth gums in tomato ketchup: Physical, rheological, and textural properties. Journal of texture studies. 2018 Dec;49(6):586-94.

Omoto T, Uno Y, Asai I. The latest technologies for the application of gellan gum. InPhysical Chemistry and Industrial Application of Gellan Gum 1999 (pp. 123-126). Springer Berlin Heidelberg.

BeMiller JN. Gum Arabic and Other Exudate Gums. In: Carbohydrate Chemistry for Food Scientists. Elsevier; 2019. p. 313–21.

Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel). 2020 Oct 20;12(10):2417.

Santana ÁL, Meireles MA. New starches are the trend for industry applications: a review. Food public health. 2014 Oct 1;4(5):229-41.

Zhao Y, Sun H, Yang B, Weng Y. Hemicellulose-based film: potential green films for food packaging. Polymers. 2020 Aug 7;12(8):1775.

Downloads

Published

2025-05-26

How to Cite

1.
Pratibha P, Sharma R, Rajput U, Rao NR. A Review on Biomatrix Tablets with Natural Polymers. J Neonatal Surg [Internet]. 2025May26 [cited 2025Sep.18];14(2):211-3. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6491