Optimization of Solar Cell Parameters: A Theoretical Approach

Authors

  • Vijay Aithekar
  • Amit Saxena
  • Vinay Marmat
  • Gajendra Upadhayay

Keywords:

Solar PV Efficiency, Renewable Energy, Performance Analysis, Environmental Impact, Semiconductor Materials

Abstract

The generation of conventional electricity using fossil fuels is a significant factor in the pollution of the global environment. The need for energy sources that are less polluting and more long-lasting has grown more pressing as a result of the rapid depletion of fossil fuel reserves and the negative effects these fuels have on the environment. Solar photovoltaic (PV) cells directly generate electricity by utilizing solar energy, a plentiful and renewable resource. However, the cost-effectiveness of solar power generation is ultimately affected by a number of operational and environmental factors that have a significant impact on the efficiency, output, productivity, and lifespan of solar PV cells. The effects of environmental and operational parameters on solar PV cell performance are reviewed in this study. The accumulation of dust, soiling, temperature, and humidity have all been identified as significant contributors to decreased efficiency. Wind-driven dust and sand particles further exacerbate these difficulties in remote areas. A sticky layer forms on the PV modules when dust accumulates in humid conditions. The benefits and challenges of advanced strategies to mitigate these effects are examined in this paper. In addition, it discusses the influence of various solar power generation parameters and their function in efficiency optimization. Solar PV technology's semiconductor materials' efficiency and energy conversion capabilities are also examined. Last but not least, the paper emphasizes the overall advantages of solar PV energy, highlighting its potential as an essential option for producing power in a sustainable manner

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. Bataineh and D. Dalalah, “Optimal configuration for design of stand-alone PV system”, Smart Grid and Renewable Energy, Vol. 3, Pp. 139-147, 2012.

J. Ma, K.L. Man, T.O. Ting, E.G. Zhang, S. Guan, P.W. Wong, T. Krilavicius, D. Sauleviius, and C.U. Lei, “Simple Computational method of predicting electrical characteristics in solar cell”, Elektronika IR Elektrotechnka, Vol. 20, No. 1, Pp. 41-44, 2014.

J.M. Olchowik, S. Gulkowski, K.J. CieŚlak, J. Banas, I. JƠźwik, D. Szymczuk, K. Zabielski, J. Mucha, M. Zdrojewska, J. Admaczyk, R. Tomaszeweski, "Influence of temperature on the efficiency of monocrystalline solar cells in the south – eastern Poland conditions", Materials science –Poland, Vol. 24, no. 4, 2006.

M. Mani and R. Pillai, “Impact of dust on solar photovoltaic performance: Research status, challenges and recommendations”, Renewable and Sustainable Energy Reviews, Vol. 14, Pp. 3124-3131, 2010.

J.K. Kaldellis and A. Kokala, “Simulating the dust effect on the energy performance of photovoltaic generates based on experimental measurements”, Energy, Vol. 36, Pp. 5154-5161, 2011.

Z.A. Majid, M.H. Ruslan, K. Sopian, M.Y. Othman and M.S.M. Azmi, “Study on performance of 80 Watt floating photovoltaic panel”, Journal of Mechanical Engineering and Sciences, Vol. 7, Pp. 1150-1156, 2014.

M. Benghanem, “Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia”, Journal of Applied Energy, No. 88, Pp. 1427-1433, 2011.

E.F.A. Al-Showany, “The Impact of the Environmental Condition on the Performance of the Photovoltaic Cell”, American Journal of Energy Engineering, ISSN: 2329-1648, pp. 1-7, 2016.

T. Bhattacharya, A. Chakraborty and K. Pal, “Effects of ambient temperature and wind speed on performance of Monocrystalline solar photovoltaic module in Tripura”, India, Journal of Solar Energy, Article ID 817078, 2014.

F. Dincer and M.E. Maral, “Critical factors that affecting efficiency of solar cells”, Smart Grid and Renewable Energy, Vol. 1, Pp. 47-50, 2010.

L. Tianze, Z. Xia, J. Chuan and H. Luan, “Methods and analysis of factors impact on the efficiency of the photovoltaic generation”, Journal of Physics, Conference Series, 276, 2011.

N. Hamroni, M. Jradi and A. Cherif, “Solar radiation and ambient temperature effects on the performances of a PV pumping system”, Revue des Energies Renouvelables, Vol. 11, No.1, Pp. 95-16, 2008.

R. Hosseini, N. Hosseini and H. Khorasanizadeh, “An experimental study of combining system with a heating system”, Word Renewable Energy Congress 2011-Swiden, Pp. 2993-3000, 2011.

D.S. Rajput and K. Sudhakar, “Effect of dust on the performance of solar panel”, International Journal of Chem Tech Research, Vol. 5, No. 2, Pp. 1083-1086, 2013.

M.A. Qais, “Temperature Effect on Photovoltaic Modules Power Drop”, Al-Khwarizmi Engineering Journal, Vol. 11, No. 2, Pp. 62- 73, 2015.

H.M. Ali, M.A. Zafar, M.A. Bashir, M.A. Nasir, M. Ali and A.M. Siddiqui, “Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan”, Thermal Science, Online, First Issus (00), Pp. 46 46, 2015.

A.O. Mohamed, and A. Hasan, “Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment”, Journal of Basic and Applied Science Research, Vol. 2, No. 11, Pp. 11030-11036, 2012.

F. Dincer and M.E. Maral, “Critical factors that affecting efficiency of solar cells”, Smart Grid and Renewable Energy, Vol. 1, Pp. 47-50, 2010.

G. Raina, S. Mandal, S. Shinda, M. Patil and R. Hedau, “A novel technique for PV panel performance prediction”, International Journal of Computer Application, Internationa l Conference and Workshop on Emerging Trends in Technology, Pp. 19-24, 2013.

H.A. Zondag, “Flat-plate PV-Thermal collectors and systems A review”, Renewable and Sustainable Energy Reviews, 12 (4), Pp. 891-959, 2008.

Yadav, A., & Kumar, P. (2015). Enhancement in efficiency of PV cell through P&O algorithm. International Journal for Technological Research in Engineering, 2, 2642–2644.

Castellano, R. (2010). Solar panel processing. Old City Publishing Inc.

McEvoy, A., Castaner, L., & Markvart, T. (2012). Solar cells: Materials, manufacture and operation (2nd ed., pp. 3–25). Elsevier Ltd.

Bagher, A. M., Vahid, M. M. A., & Mohsen, M. (2015). Types of solar cells and application. American Journal of Optics and Photonics, 3, 94–113.

Srinivas, B., Balaji, S., Nagendra Babu, M., & Reddy, Y. S. (2015). Review on present and advance materials for solar cells. International Journal of Engineering Research-Online, 3(2015), 178–182.

Shruti, S., Kamlesh, K. J., & Ashutosh, S. (2015). Solar cells: In research and appli cations—A review. Materials Sciences and Applications, 6, 1145–1155.

Soteris, K. (2009). Solar energy engineering processes and system (1st ed., p. 30). Elsevier Inc.

Shukla, A. K., Sudhakar, K., & Baredar, P. (2016). A comprehensive review on design of building integrated photovoltaic system. Energy and Buildings, 128, 99–110.

Almonacid, F., Rus, C., Hontoria, L., Fuentes, M., & Nofuentes, G. (2009). Char acterization of Si-crystalline PV modules by artificial neural networks. Renewable Energy, 34, 941–949.

Almonacid, F., Rus, C., Hontoria, L., & Muñoz, F. (2010). Characterization of PV CIS module by artificial neural networks. A comparative study with other methods. Renewable Energy, 35, 973–980.

Balzani, M., & Reatti, A. (2005). Neural network based model of a PV array for the optimum performance of PV system. Research in microelectronics and electronics (Ph.D.) (pp. 123–126). IEEE.

Fathabadi, H. (2013). Novel neural-analytical method for determining silicon/ plastic solar cells and modules characteristics. Energy Conversion and Management, 76, 253–259.

Piliougine, M., Elizondo, D., Mora-López, L., & Sidrach-de-Cardona, M. (2015). Modelling photovoltaic modules with neural networks using angle of incidence and clearness index. Progress in Photovoltaics: Research and Applications, 23, 513–523.

Dash, S. K., Raj, R. A., Nema, S., & Nema, R. (2015). Development of photovoltaic (PV) cell/module/array and non-uniform irradiance effect based on two-diode model by using PSPICE simulator. In Proceedings of interna tional conference on nascent technologies in the engineering field (ICNTE 2015) (pp. 1–6). IEEE.

Kajihara, A., & Harakawa, T. (2005). Model of photovoltaic cell circuits under partial shading. In: Proceedings of IEEE international conference on indus trial technology, (ICIT 2005) (pp. 866–870). IEEE.

Vergura, S. (2015). Scalable model of PV cell in variable environment condition based on the manufacturer datasheet for circuit simulation. In Proceed ings of IEEE 15th international conference on environment and electrical engineering (EEEIC 2015) (pp. 1481–1485). IEEE.

Chin, V. J., Salam, Z., & Ishaque, K. (2015). Cell modeling and model parameters estimation techniques for photovoltaic simulator application: A review. Applied Energy, 154, 500–519.

Villalva, M. G., & Gazoli, J. R. (2009a). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Elec tronics, 2009(24), 1198–1208.

Rajasekar, N., Kumar, N. K., & Venugopalan, R. (2013). Bacterial foraging algo rithm based solar PV parameter estimation. Solar Energy, 97, 255–265.

Ciulla, G., Brano, V. L., Di Dio, V., & Cipriani, G. (2014). A comparison of different one-diode models for the representation of I–V characteristic of a PV cell. Renewable and Sustainable Energy Reviews, 32, 684–696.

Lim, L. H. I., Ye, Z., Ye, J., Yang, D., & Du, H. (2015). A linear method to extract diode model parameters of solar panels from a single I–V curve. Renew able Energy, 76, 135–142.

Gupta, S., Tiwari, H., Fozdar, M., & Chandna, V. (2012). Development of a two diode model for photovoltaic modules suitable for use in simulation studies. In Proceedings of Asia-Pacific power and energy engineering conference (APPEEC 2012) (pp. 1–4). IEEE.

Ulapane, N. N., Dhanapala, C. H., Wickramasinghe, S. M., Abeyratne, S. G., Rathnayake, N., & Binduhewa, P. J. (2011). Extraction of parameters for simulating photovoltaic panels. In Proceedings of the 6th IEEE interna tional conference on industrial and information systems (ICIIS 2011) (pp. 539–544). IEEE.

Bellini, A., Bifaretti, S., Iacovone, V., & Cornaro, C. (2009). Simplified model of a photovoltaic module. In Applied electronics, 2009 (AE 2009) (pp. 47–51). IEEE.

Chouder, A., Silvestre, S., Sadaoui, N., & Rahmani, L. (2012). Modeling and simulation of a grid connected PV system based on the evaluation of main PV module parameters. Simulation Modelling Practice and Theory, 20, 46–58.

Bai, J., Liu, S., Hao, Y., Zhang, Z., Jiang, M., & Zhang, Y. (2014). Development of a new compound method to extract the five parameters of PV modules. Energy Conversion and Management, 79, 294–303.

Santbergen, R., Muthukumar, V. A., Valckenborg, R. M. E., van de Wall, W. J. A., Smets, A. H. M., & Zeman, M. (2017). Calculation of irradiance distribu tion on PV modules by combining sky and sensitivity maps. Solar Energy, 150, 49–54.

Bright, J. M., Babacan, O., Kleissl, J., Taylor, P. G., & Crook, R. (2017). A synthetic, spatially decorrelating solar irradiance generator and application to a LV grid model with high PV penetration. Solar Energy, 147, 83–98. https:// doi.org/10.1016/j.solener.2017.03.018

Prema, V., & Uma, R. K. (2015). Development of statistical time series models for solar power prediction. Renewable Energy, 83, 100–109. https:// doi.org/ 10.1016/j.renene.2015.03.038

Fouad, M. M., Shihata, L. A., & Morgan, E. S. I. (2017). An integrated review of factors influencing the performance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499–1511.

Wang, F., Xuan, Z., Zhen, Z., et al. (2020). A minutely solar irradiance forecast ing method based on real-time sky image-irradiance mapping model. Energy Conversion and Management, 220, 113075. https://doi.org/10. 1016/j.enconman.2020.113075

Viitanen, J. (2015). Energy efficient lighting systems in buildings with inte grated photovoltaics. https://aaltodoc.aalto.fi/handle/123456789/ 15265

Zogou, O. (2011). Experimental and computational investigation of the thermal and electrical performance of a new building integrated photovoltaic concept. Mechanical Engineering Dept.

Salim, M. S., Najim, J. M., Salih, S. M., & Mohammed, S. S. (2013). Practical evaluation of solar irradiance effect on PV performance. Energy Science and Technology, 6(62), 36–40. https://doi.org/10.3968/j.est.1923847920 130602.2671

Fesharaki, V. J., Dehghani, M., & Fesharaki, J. J. (2011). The effect of temperature on photovoltaic cell efficiency. In Proceedings of the 1st international conference on emerging trends in energy conservation—ETEC Tehran, Tehran, Iran (Vol. 11, pp. 20–21).

Odeh, S., & Behnia, M. (2009). Improving photovoltaic module efficiency using water cooling. Heat Transfer Engineering, 30(6), 499–505. https://doi.org/ 10.1080/01457630802529214

Said, S. A. M., Hassan, G., Walwil, H. M., & Al-Aqeeli, N. (2018). The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renewable and Sustain able Energy Reviews, 82, 743–760. https://doi.org/10.1016/j.rser.2017.09. 042

Adinoyi, M. J., & Said, S. A. (2013). Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy, 60, 633–636.

Yilbas, B. S., Ali, H., Al-Sharafi, A., & Al-Aqeeli, N. (2017). Environmental mud adhesion on optical glass surface: Effect of mud drying temperature on surface properties. Solar Energy, 150, 73–82. https://doi.org/10.1016/j. solener.2017.04.041

Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajig horbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi. org/10.1016/j.rser.2016.01.044

Vasel, A., & Iakovidis, F. (2017). The effect of wind direction on the performance of solar PV plants. Energy Conversion and Management, 153, 455–461. https://doi.org/10.1016/j.enconman.2017.09.077

Lavado Villa, L. F., Ho, T. P., Crebier, J. C., & Raison, B. (2013). A power electronics equalizer application for partially shaded photovoltaicmodules. IEEE Transactions on Industrial Electronics, 60(3), 1179–1190. https://doi.org/ 10.1109/TIE.2012.2201431

Ndiaye, A., Charki, A., Kobi, A., Kébé, C. M. F., Ndiaye, P. A., & Sambou, V. (2013). Degradations of silicon photovoltaic modules: A literature review. Solar Energy, 96, 140–151. https://doi.org/10.1016/j.solener.2013.07.005

Kempe, M. D. (2006). Modeling of rates of moisture ingress into photovoltaic modules. Solar Energy Materials and Solar Cells, 90(16), 2720–2738. https://doi.org/10.1016/j.solmat.2006.04.002

Gosumbonggot, J., & Fujita, G. (2019). Global maximum power point tracking under shading condition and hotspot detection algorithms for pho tovoltaic systems. Energies, 12(5), 882. https://doi.org/10.3390/en120 50882

Kazem, H. A., Chaichan, M. T., Al-Waeli, A. H. A., & Sopian, K. (2020). A review of dust accumulation and cleaning methods for solar PV systems. Journal of Cleaner Production, 276, 123187.

Downloads

Published

2025-05-27

How to Cite

1.
Aithekar V, Saxena A, Marmat V, Upadhayay G. Optimization of Solar Cell Parameters: A Theoretical Approach. J Neonatal Surg [Internet]. 2025May27 [cited 2025Sep.21];14(28S):295-316. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6599