Assessing the Antimicrobial and Neonatal Diabetes Potential of Phytol from Scoparia dulcis: A Combined Computational and Experimental Approach
Keywords:
Phytol, Scoparia dulcis, Antimicrobial activity, In vitro disc-diffusion assay, Computational docking, Neonatal diabetesAbstract
Natural products from medicinal plants offer a safe alternative to conventional medicine for the treatment of various diseases, especially microbial infections burdened by microbial resistance, as well as metabolic disorders such as neonatal diabetes. In this study, we performed a screening study of the plant Scoparia dulcis for phytol for both anti-microbial activity and potential modulatory activity on neonatal diabetes-associated targets using in silico method. Phytol was docked in key microbial enzymes as well as neonatal diabetes targets. Phytol had the highest docking affinities with dihydrofolate reductase and lanosterol 14α-demethylase with the use of molecular docking. Additionally, phytol also had a good docking score towards KCNJ11 and ABCC8 implying it may modulate insulin secretory pathway. In vitro, Scoparia dulcis leaf water extract has also shown a inhibition of Escherichia coli in disc diffusion assay. Therefore, together these results suggest that phytol's molecular activities may be beneficial, acting as an antimicrobial agent but also potentially suggesting a therapy for neonatal diabetes.
Downloads
Metrics
References
Debta, P., Swain, S. K., Soyab, M. T., Sahu, M. C., & Lenka, S. (2020). Microbial Infectious Disease: A Mini Review. Indian Journal of Forensic Medicine & Toxicology, 14(4), 8389-8393(2020).
Baker MD, Acharya KR. Superantigens: structure function relationships. Int J Med Microbiol, 293-7-8:529–537 (2004).
Ram, B., & Thakur, R. (2022). Epidemiology and Economic Burden of Continuing Challenge of Infectious Diseases in India: Analysis of Socio-Demographic Differentials. Frontiers in public health, 10, 901276. https://doi.org/10.3389/fpubh..901276 (2022)
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in a systematic analysis. The Lancet; 399(10325): P629-655. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0 (2019)
Integrated Disease Surveillance Programme, Ministry of Health & Family Welfare, Government of India. (2018)
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature, 451:990–993. doi:10.1038/nature06536 (2008)
Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. Journal of fungi (Basel, Switzerland), 3(4), 57. https://doi.org/10.3390/jof3040057 (2017)
Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. Medicinal plants: past history and future perspective. J HerbMed Pharmacol, 7:1–7. doi:10.15171/jhp.2018.01. (2018)
Schenone M, Vlado D, Bridget K, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol, 9:232–240. doi:10.1038/nchembio.1199 (2013)
Gundi, G., Sane, R. T., Mangaonkar, K., Vora, D., Shailajan, S., & Banerjee, A. (2006). Antimicrobial Activity of Scoparia Dulcis Linn. INDIAN DRUGS-BOMBA, 43(1), 51.2 (2013)
Islam M, Ali E, Uddin S, Ahmed M, et al Phytol: A review of biomedical activities.Food ChemToxicolo, 121 82-94 (2018)
Taj, T., Sultana, R., Shahin, H., Chakraborthy, M., & Ahmed, M. G. Phytol a phytoconstituent, its chemistry and pharmacological actions. Gis Science Journal, 8(1), 395-406 (2021)
Pranowo, H. D., & Hetadi, A. K. R. (2011). Pengantar Kimia Komputasi. Penerbit Lubuk Agung, Bandung, 1-118.
Pratama, A. A., Rifai, Y., & Marzuki, A. Docking Molekuler Senyawa 5, 5’-Dibromometilsesamin. Majalah Farmasi dan Farmakologi, 21(3), 67-69 (2017)
Leite-Sampaio, N. F., Gondim, C. N., Martins, R. A., Siyadatpanah, A., Norouzi, R., Kim, B., ... & Coutinho, H. D. Potentiation of the Activity of Antibiotics against ATCC and MDR Bacterial Strains with (+)‐α‐Pinene and (‐)‐Borneol. BioMed research international, 1, 8217380 (2022)
Freire, S. M., Torres, L., Roque, N. F., Souccar, C., & Lapa, A. J. Analgesic activity of a triterpene isolated from Scoparia dulcis L.(Vassourinha). Memórias do Instituto Oswaldo Cruz, 86, 149-151 (1991)
Devi, V. M., & Murugan, M. Elemental concentration, phytochemical and antimicrobial activity of Scoparia dulcis Linn. Materials Today: Proceedings, 45, 2063-2068 (2021)
Britannica, T. Editors of encyclopaedia. Argon. Encyclopedia Britannica. (2020)
Song, Y., Xiao, L., Jayamani, I., He, Z., & Cupples, A. M. A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing. Journal of microbiological methods, 108, 4-11(2015)
de Moraes, J., de Oliveira, R. N., Costa, J. P., Junior, A. L., de Sousa, D. P., Freitas, R. M., ... & Pinto, P. L. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS neglected tropical diseases, 8(1), e2617 (2014)
Lin, W., Shen, P., Song, Y., Huang, Y., & Tu, S. Reactive oxygen species in autoimmune cells: function, differentiation, and metabolism. Frontiers in immunology, 12, 635021 (2021)
Carvalho, A. M., Heimfarth, L., Pereira, E. W. M., Oliveira, F. S., Menezes, I. R., Coutinho, H. D., ... & Quintans-Júnior, L. J. Phytol, a chlorophyll component, produces antihyperalgesic, anti-inflammatory, and antiarthritic effects: Possible NFκB pathway involvement and reduced levels of the proinflammatory cytokines TNF-α and IL-6. Journal of natural products, 83(4), 1107-1117 (2020)
Endriyatno, N. C. Molecular Docking of Betel Leaf (Piper betle L.) on Protein Dihydrofolate reductase of Mycobacterium tuberculosis. Science and Community Pharmacy Journal, 1(1), 1-10 (2022)
Ebenezer, K. S., Tamilselvan, C., Manivanan, R., Punniyamoorthy, A., Palanisamy, M., & Varadaraj, M. In vitro antibacterial, antioxidant activities and in silico molecular docking of potential anti HSV-1 protein target of Phytol from Premna serratifolia. In vitro, 11(09) (2021)
Banerjee, S., Wang, X., Du, S., Zhu, C., Jia, Y., Wang, Y., & Cai, Q. Comprehensive role of SARS-CoV-2 spike glycoprotein in regulating host signaling pathway. Journal of medical virology, 94(9), 4071–4087. https://doi.org/10.1002/jmv.27820 (2022)
Yu, Xuekui; Shah, Sanket; Lee, Manfred; Dai, Wei; Lo, Pierrette; Britt, William; Zhu, Hua; Liu, Fenyong; Hong Zhou, Z. "Biochemical and structural characterization of the capsid-bound tegument proteins of human cytomegalovirus". Journal of Structural Biology. 174 (3): 451–460. doi:10.1016/j.jsb.2011.03.006. PMC 3684277. PMID 21459145 (2011)
Seo M, Hyun KS, Yoochan M, et al. Development of natural compound molecular fingerprint (NC-MFP) with the dictionary of natural products (DNP) for natural product-based drug development. J Cheminformatic,12:1–17. doi:10.1186/s13321-020-0410-3 (2020)
Yisa, J. Phytochemical analysis and antimicrobial activity of Scoparia dulcis and Nymphaea lotus. Australian Journal of Basic and Applied Sciences, 3(4), 3975-3979. (2009)
Parvataneni, R., & Pedireddi, M. Phytochemical analysis and antimicrobial evaluation of chloroform extracts of stem and roots of Scoparia dulcis L, (2019)
.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.