Integrative Oncology in Practice: Evaluating the Efficacy and Safety of Herbal-Conventional Therapeutic Synergy

Authors

  • Mamatha H S
  • Ashok Kumar BS
  • Disha N S

Keywords:

cancer, disease, conventional therapies, curcumin, quercetin, Herbal

Abstract

Cancer continues to be a major public health problem worldwide, with rising incidence and death rates. Although traditional treatments, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy, have effectively improved survival rates, their resulting toxicities, drug resistance, and cost underscore the importance of developing more integrative treatment modalities. Integrative oncology, the integration of evidence-based complementary care with standard medical practice, represents a potential solution to these shortcomings. Herbal medicine, based on traditional systems of medicine, has bioactive compounds including curcumin, resveratrol, quercetin, epigallocatechin gallate, berberine, withaferin A, and sulforaphane, all of which have anticancer activity by mechanisms such as induction of apoptosis, inhibition of angiogenesis, and immunomodulation. Although there is emerging evidence that combining herbal compounds with conventional therapies may enhance survival rates and minimize treatment-related side effects, the scientific evidence so far is limited to a meta-analysis of 14 clinical trials. The discipline, nonetheless, is challenged by regulatory heterogeneity, inadequate large-scale clinical trials, and possible herb-drug interactions. To achieve the complete potential of integrative oncology, rigorous, large-scale clinical studies and protocols of standardization must be addressed by research in the future. A patient-focused, evidence-driven model that integrates scientifically proven herbal treatments and mainstream cancer therapies can provide a more effective and safer approach to cancer care.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492

Wang, X., Yang, L., Liu, L., Ran, X., Zhang, H., & Liu, D. (2022). Strategies for overcoming cancer drug resistance: New insights from molecular mechanisms and drug development. Pharmacology & Therapeutics, 239, 108262. https://doi.org/10.1016/j.pharmthera.2021.108262

Deng, G., Cassileth, B. R., & Yeung, K. S. (2021). Complementary therapies in cancer care: An overview. The Oncologist, 26(1), e1-e11. https://doi.org/10.1002/onco.13555

Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285

Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. https://doi.org/10.3390/molecules21050559

Cragg, G. M., & Pezzuto, J. M. (2016). Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Medical Principles and Practice, 25(Suppl 2), 41–59.

Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: An 'old-age' disease with an 'age-old' solution. Cancer Letters, 267(1), 133–164.

Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: From bedside to bench and back. Biotechnology Advances, 32(6), 1053–1064

Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2015). Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell, 28(6), 690-714.

Pavlakis, N., & Briasoulis, E. (2017). Molecularly targeted therapies in cancer: The case of kinase inhibitors. The Lancet Oncology, 18(4), 474-485.

Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer, 3(5), 330-338.

Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4(4), 253-265.

Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2014). Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 11(2), 139.

Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2005). The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 104(6), 1129-1137.

Durante, M., & Loeffler, J. S. (2010). Charged particles in radiation oncology. Nature Reviews Clinical Oncology, 7(1), 37-43.

June, C. H., O'Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365.

Postow, M. A., Sidlow, R., & Hellmann, M. D. (2018). Immune-related adverse events associated with immune checkpoint blockade. New England Journal of Medicine, 378(2), 158-168.

Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., ... & Larson, R. A. (2001). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of Medicine, 355(23), 2408-2417.

Hudis, C. A. (2007). Trastuzumab—mechanism of action and use in clinical practice. New England Journal of Medicine, 357(1), 39-51.

Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 13(10), 714-726.

Osborne, C. K., & Schiff, R. (2011). Mechanisms of endocrine resistance in breast cancer. Annual Review of Medicine, 62, 233-247.

Ali, S., & Coombes, R. C. (2002). Endocrine-responsive breast cancer and strategies for combating resistance. Nature Reviews Cancer, 2(2), 101-112

Attard, G., Parker, C., Eeles, R. A., Schroder, F., Tomlins, S. A., Tindall, D. J., ... & de Bono, J. S. (2016). Prostate cancer. The Lancet, 387(10013), 70-82.

Smith, M. R., Saad, F., Egerdie, B., Sieber, P. R., Tammela, T. L., Ke, C., & Leder, B. Z. (2018). Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. Journal of Urology, 199(2), 379-386.

Appelbaum, F. R. (2007). Hematopoietic-cell transplantation at 50. New England Journal of Medicine, 357(15), 1472-1475

Copelan, E. A. (2006). Hematopoietic stem-cell transplantation. New England Journal of Medicine, 354(17), 1813-1826

Gyurkocza, B., Sandmaier, B. M., & Appelbaum, F. R. (2010). Graft-versus-host disease: Current therapy and future directions. Frontiers in Immunology, 1, 14.

van der Zee, J. (2002). Heating the patient: A promising approach? Annals of Oncology, 13(8), 1173-1184

Dewhirst, M. W., Vujaskovic, Z., Jones, E., & Thrall, D. (2005). Re-setting the biologic rationale for thermal therapy. International Journal of Hyperthermia, 21(8), 779-790.

Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387.

Allison, R. R., & Sibata, C. H. (2010). Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy, 7(2), 61-75.

Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Gupta, S. R., Tharakan, S. T., Koca, C., Dey, S., & Sung, B. (2013). Curcumin and cancer cell signaling: A dose-dependent effect. Annals of the New York Academy of Sciences, 1271(1), 1–19. https://doi.org/10.1111/j.1749-6632.2012.06780.x

Jiang, M. C., Yang-Yen, H. F., Yen, J. J., & Lin, J. K. (2019). Curcumin induces apoptosis in immortalized mouse fibroblast NIH 3T3 cells through a reactive oxygen species-dependent mechanism. International Journal of Molecular Sciences, 20(10), 2454. https://doi.org/10.3390/ijms20102454

Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493–506. https://doi.org/10.1038/nrd2060

Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220. https://doi.org/10.1126/science.275.5297.218

Shukla, Y., & Singh, R. (2011). Resveratrol and cellular mechanisms of cancer prevention. Annals of the New York Academy of Sciences, 1215(1), 1–8. https://doi.org/10.1111/j.1749-6632.2010.05870.x

Davis, W., Lamson, D. W., & Brignall, M. S. (2009). Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Alternative Medicine Review, 4(5), 304–329.

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., & Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients, 8(3), 167. https://doi.org/10.3390/nu8030167

Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., Mengelers, M. J., & Katan, M. B. (1996). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. The American Journal of Clinical Nutrition, 62(6), 1276–1282. https://doi.org/10.1093/ajcn/62.6.1276

Yang, C. S., Wang, X., Lu, G., & Picinich, S. C. (2009). Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer, 9(6), 429–439. https://doi.org/10.1038/nrc2641

Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., & Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Research, 66(2), 1234–1240. https://doi.org/10.1158/0008-5472.CAN-05-1145

Li, Y., Yuan, Y., Meeran, S. M., & Tollefsbol, T. O. (2018). Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells. Molecular Cancer, 9(1), 274. https://doi.org/10.1186/1476-4598-9-274

Sun, Y., Xun, K., Wang, Y., & Chen, X. (2009). A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anti-Cancer Drugs, 20(9), 757–769. https://doi.org/10.1097/CAD.0b013e328330d95b

Wang, Y., Liu, J., Zhang, J., & Liu, B. (2016). Berberine reverses doxorubicin resistance by inhibiting autophagy through the PTEN/Akt/mTOR signaling pathway in breast cancer. Oncology Reports, 35(6), 3661–3669. https://doi.org/10.3892/or.2016.4734

Jiang, S., Wang, Q., & Wang, M. (2021). Berberine reverses multidrug resistance of human breast cancer MCF-7/ADR cells via downregulation of P-glycoprotein expression and inhibition of the PI3K/Akt signaling pathway. Oncology Letters, 21(1), 57. https://doi.org/10.3892/ol.2020.12330

Zhang, X., Zhao, Y., & Zhang, M. (2020). Berberine inhibits P-glycoprotein in multidrug-resistant leukemia cells via downregulation of NF-κB and MAPK signaling pathways. Biomedicine & Pharmacotherapy, 131, 110673. https://doi.org/10.1016/j.biopha.2020.110673.

Stan, S. D., Hahm, E. R., Warin, R., & Singh, S. V. (2008). Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Research, 68(18), 7661–7669. https://doi.org/10.1158/0008-5472.CAN-08-1510

Vyas, A. R., Singh, S. V., & Aggarwal, B. B. (2012). Withaferin A suppresses the epithelial-mesenchymal transition in human breast cancer cells. Oncotarget, 3(6), 585–596. https://doi.org/10.18632/onc

Zhang, Y., Talalay, P., Cho, C. G., & Posner, G. H. (2006). A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences, 89(6), 2399–2403. https://doi.org/10.1073/pnas.89.6.2399

Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269(2), 291–304. https://doi.org/10.1016/j.canlet.2008.04.018

Bisht, R., Joshi, B., & Joshi, H. (2016). Phytomedicine in the treatment of cancer: A health technology assessment. Journal of Clinical and Diagnostic Research, 10(2), ZE10–ZE15. https://doi.org/10.7860/JCDR/2016/17334.7274

Johnson, S. B., Park, H. S., Gross, C. P., & Yu, J. B. (2018). Use of alternative medicine for cancer and its impact on survival. JAMA Oncology, 4(10), 1375–1381. https://doi.org/10.1001/jamaoncol.2018.2487

Lee, H. W., Cheon, C., & Ko, S. G. (2024). Safety of the herbal medicine SH003 in patients with solid cancer: A multi-center, single-arm, open-label, dose-escalation phase I study. Integrative Cancer Therapies, 23, 15347354241293451. https://doi.org/10.1177/15347354241293451

Oh, S., Kim, K. Y., & Lee, J. H. (2024). Fucoidan-induced anti-inflammatory and anti-cancer effects in advanced cancer patients. Marine Drugs, 22(1), 15. https://doi.org/10.3390/md22010015

Downloads

Published

2025-05-31

How to Cite

1.
H S M, BS AK, N S D. Integrative Oncology in Practice: Evaluating the Efficacy and Safety of Herbal-Conventional Therapeutic Synergy. J Neonatal Surg [Internet]. 2025May31 [cited 2025Oct.8];14(29S):534-4. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6836