Harnessing Computational Drug Design for Innovative Breast Cancer Therapeutics

Authors

  • Shruti Aggarwal
  • Saumya Das
  • Priyanka Bansal
  • Tushar Chaudhary

Keywords:

Computational drug design, breast cancer, molecular docking, pharmacophore modeling, virtual screening, machine learning, targeted therapy

Abstract

Computational drug design has transformed pharmaceutical research by streamlining the discovery and development of innovative chemotherapy agents. In the context of breast cancer (BC), advanced computational techniques—such as molecular docking, virtual screening, and pharmacophore modeling—have significantly contributed to the identification of promising drug candidates. Both structure-based and ligand-based drug design strategies have enabled precise targeting of oncogenic proteins, including estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), BRCA1/BRCA2, and vascular endothelial growth factor (VEGF). The integration of artificial intelligence (AI) and machine learning (ML) has further enhanced predictive modeling, improving drug efficacy, optimizing lead compound selection, and reducing development timelines. AI-driven approaches, particularly deep learning and neural networks, have improved the prediction of binding affinities, selectivity, and potential off-target effects in ligand-based drug design. These methodologies have accelerated the discovery of novel therapeutic agents by efficiently analyzing extensive datasets and virtual screening outcomes. Numerous in silico-identified compounds with strong binding affinities have progressed to clinical evaluation. This review provides a comprehensive overview of computational strategies in BC drug discovery, highlighting key methodologies, emerging molecular targets, the impact of AI in drug design, and the translational challenges involved. By harnessing these computational tools, researchers can enhance precision, reduce costs, and accelerate the development of targeted therapies for breast cancer.

 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

De Angelis ML, Francescangeli F, Zeuner A. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers. 2019 Oct 15;11(10):1569, https://doi.org/10.3390/cancers11101569

Yao J, Li S, Wang X. Identification of breast cancer immune subtypes by analyzing bulk tumor and single cell transcriptomes. Frontiers in Cell and Developmental Biology. 2022 Jan 3;9:781848, https://doi.org/10.3389/fcell.2021.781848

Abbas MK, Rassam A, Karamshahi F, Abunora R, Abouseada M. The role of AI in drug discovery. Chembiochem. 2024 Jul 15;25(14):e202300816.

https://doi.org/10.1002/cbic.202300816

Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MS, Dua K, Kamal MA. Emerging promise of computational techniques in anti-cancer research: at a glance. Bioengineering. 2022 Jul 25;9(8):335. https://doi.org/10.3390/bioengineering9080335

Priya MG, Manisha J, Lazar LP, Rathore SS, Solomon VR. Computer-aided Drug Discovery Approaches in the Identification of Anticancer Drugs from Natural Products: A Review. Current Computer-Aided Drug Design. 2025 Feb;21(1):1-4. https://doi.org/10.2174/0115734099283410240406064042

Kar RK. Benefits of hybrid QM/MM over traditional classical mechanics in pharmaceutical systems. Drug Discovery Today. 2023 Jan 1;28(1):103374. https://doi.org/10.1016/j.drudis.2022.103374

Bhunia SS, Saxena M, Saxena AK. Ligand-and structure-based virtual screening in drug discovery. InBiophysical and Computational Tools in Drug Discovery 2021 Aug 7 (pp. 281-339). Cham: Springer International Publishing. https://doi.org/10.1007/7355_2021_130

Singh S, Gupta H, Sharma P, Sahi S. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artificial Intelligence Chemistry. 2024 Jun 1;2(1):100039. https://doi.org/10.1016/j.aichem.2023.100039

Wu K, Kwon SH, Zhou X, Fuller C, Wang X, Vadgama J, Wu Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. International Journal of Molecular Sciences. 2024 Dec 6;25(23):13121. https://doi.org/10.3390/ijms252313121

de Angelo RM, Nascimento LA, Encide JP, Barbosa H, Lago JH, da Silva Emery F, Honorio KM. Advances and Challenges in Molecular Docking Applied to Neglected Tropical Diseases. Current Medicinal Chemistry. 2025 Jan 3. https://doi.org/10.2174/0109298673327352240930040103

Gangwal A, Lavecchia A. Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives. Journal of Medicinal Chemistry. 2025 Feb 6.

Chakraborty S, Sharma G, Karmakar S, Banerjee S. Multi-OMICS approaches in cancer biology: New era in cancer therapy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2024 Jun 1;1870(5):167120. https://doi.org/10.1016/j.bbadis.2024.167120

Kamble P, Nagar PR, Bhakhar KA, Garg P, Sobhia ME, Naidu S, Bharatam PV. Cancer pharmacoinformatics: Databases and analytical tools. Functional & Integrative Genomics. 2024 Oct;24(5):166. https://doi.org/10.1007/s10142-024-01445-5

Raparthi M. Harnessing Quantum Computing for Drug Discovery and Molecular Modelling in Precision Medicine: Exploring Its Applications and Implications for Precision Medicine Advancement. Advances in Deep Learning Techniques. 2022 Feb 2;2(1):27-36.

Casotti MC, Meira DD, Zetum AS, Campanharo CV, da Silva DR, Giacinti GM, da Silva IM, Moura JA, Barbosa KR, Altoé LS, Mauricio LS. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Frontiers in Oncology. 2024 Aug 19;14:1419599. https://doi.org/10.3389/fonc.2024.1419599

Huang Z, Yao XJ, Gu RX. Computational approaches in drug discovery and precision medicine. Front Chem. 2021 Feb 12;8:639449. https://doi.org/10.3389/fchem.2020.639449

Tutone M, Almerico AM. Computational approaches: drug discovery and design in medicinal chemistry and bioinformatics. Molecules. 2021 Dec 11;26(24):7500. https://doi.org/10.3390/molecules26247500

Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev. 2014;66:334-395. https://doi.org/10.1124/pr.112.007336

Iwaloye O, Ottu PO, Olawale F, Babalola OO, Elekofehinti OO, Kikiowo B, et al. Computer-aided drug design in anti-cancer drug discovery: what have we learnt and what is the way forward? Inform Med Unlocked. 2023;41:101332. https://doi.org/10.1016/j.imu.2023.101332

Issa NT, Stathias V, Schürer S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. 2021;68:132-142. https://doi.org/10.1016/j.semcancer.2019.12.011

Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. Bol Med Hosp Infant Mex. 2016;73:411–23. https://doi.org/10.1016/j.bmhime.2017.11.040

Li K, Du Y, Li L, Wei D-Q. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2019;21:3–17. https://doi.org/10.2174/1389450120666190923162203

Iwaloye O, Ottu PO, Olawale F, Babalola OO, Elekofehinti OO, Kikiowo B, Adegboyega AE, Ogbonna HN, Adeboboye CF, Folorunso IM, Fakayode AE. Computer-aided drug design in anti-cancer drug discovery: What have we learnt and what is the way forward? Inform Med Unlocked. 2023;41:101332. https://doi.org/10.1016/j.imu.2023.101332

Sahu RK, Verma VV, Kumar A, Tandon S, Das BC, Hedau ST. In silico prediction and interaction of resveratrol on methyl-CpG binding proteins by molecular docking and MD simulations study. RSC Adv. 2022;12(18):11493–504.

https://doi.org/10.1039/D2RA00432A

Wang M, Yang JC-H, Mitchell PL, Fang J, Camidge DR, Nian W, Chiu C-H, Zhou J, Zhao Y, Su W-C. Sunvozertinib, a selective EGFR inhibitor for previously treated non-small cell lung cancer with EGFR exon 20 insertion mutations. Cancer Discov. 2022;12(7):1676. https://doi.org/10.1158/2159-8290.CD-21-1615

Olotu FA, Agoni C, Adeniji E, Abdullahi M, Soliman ME. Probing gallate-mediated selectivity and high-affinity binding of epigallocatechin gallate: a way-forward in the design of selective inhibitors for anti-apoptotic Bcl-2 proteins. Appl Biochem Biotechnol. 2019;187:1061–80. https://doi.org/10.1007/s12010-018-2863-7

Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, Cidado J, Embrey KJ, Gangl E, Gibbons FD. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9(1):5341. https://doi.org/10.1038/s41467-018-07551-w

Lam B, Arikawa Y, Cramlett J, Dong Q, de Jong R, Feher V, Grimshaw CE, Farrell PJ, Hoffman ID, Jennings A. Discovery of TAK-659 an orally available investigational inhibitor of spleen tyrosine kinase (SYK). Bioorg Med Chem Lett. 2016;26(24):5947–50. https://doi.org/10.1016/j.bmcl.2016.10.087

Shen L-A, Peng X, Bao Y, Liu C, Zhang H, Li J, Zhu D, Zhang Q. Design, synthesis and biological evaluation of quercetin derivatives as novel β-catenin/B-cell lymphoma 9 protein–protein interaction inhibitors. Eur J Med Chem. 2023;247:115075. https://doi.org/10.1016/j.ejmech.2022.115075

Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L, Li Y, Bao X, Fu H, Lou L. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 2019;110(3):1064–75.

https://doi.org/10.1111/cas.13947

Masago K, Togashi Y, Fukudo M, Terada T, Irisa K, Sakamori Y, Fujita S, Kim YH, Mio T, Inui K. Good clinical response to erlotinib in a non-small cell lung cancer patient harboring multiple brain metastases and a double active somatic epidermal growth factor gene mutation. Case Rep Oncol. 2010;3(2):98–105. https://doi.org/10.1159/000310830

Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-P, Pairish M, Jia L, Meng J, Funk L, Botrous I. Structure-based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (cMET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54(18):6342–63. https://doi.org/10.1021/jm2007613

Roskoski R Jr. STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun. 2003;309(4):709–17. https://doi.org/10.1016/j.bbrc.2003.08.055

Meadows KL, Hurwitz HI. Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med. 2012;2(10):a006577.

Asmane I, Ceraline J, Duclos B, Rob L, Litique V, Barthelemy P, Bergerat J-P, Dufour P, Kurtz J-E. New strategies for medical management of castration-resistant prostate cancer. Oncology. 2011;80(1–2):1–11. https://doi.org/10.1159/000323495

Ohbayashi N, Murayama K, Kato-Murayama M, Kukimoto-Niino M, Uejima T, Matsuda T, Ohsawa N, Yokoyama S, Nojima H, Shirouzu M. Structural basis for the inhibition of cyclin G-associated kinase by Gefitinib. ChemistryOpen. 2018;7(9):713–9. https://doi.org/10.1002/open.201800177

Xia W, Liu Z, Zong R, Liu L, Zhao S, Bacus SS, Mao Y, He J, Wulfkuhle JD, Petricoin EF 3rd. Truncated ErbB2 expressed in tumor cell nuclei contributes to acquired therapeutic resistance to ErbB2 kinase inhibitors. Mol Cancer Ther. 2011;10(8):1367–74. https://doi.org/10.1158/1535-7163

Yang S-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15(11–12):444–50. https://doi.org/10.1016/j.drudis.2010.03.013

Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018;9:923. https://doi.org/10.3389/fphar.2018.00923

Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47(7):1750–9. https://doi.org/10.1021/jm030644s

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein–ligand docking using GOLD. Proteins. 2003;52(4):609–23. https://doi.org/10.1002/prot.10465

Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12(1):2694–718. https://doi.org/10.3762/bjoc.12.267

Dias R, de Azevedo WF. Molecular docking algorithms. Curr Drug Targets. 2008;9(12):1040–7. https://doi.org/10.2174/138945008786949432

Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99(6):1129–43. https://doi.org/10.1016/j.neuron.2018.08.011

Malkhasian AYS, Howlin BJ. Automated drug design of kinase inhibitors to treat chronic myeloid leukemia. J Mol Graph Model. 2019;91:52–60. https://doi.org/10.1016/j.jmgm.2019.05.014

Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2017;15(141). https://doi.org/10.1098/rsif.2017.0387.

Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703. DOI: 10.1056/NEJMoa1210093

Sanders MPA, McGuire R, Roumen L, de Esch IJP, de Vlieg J, Klomp JPG, et al. From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. MedChemComm. 2012;3(1):28–38. 10.1039/C1MD00210D

Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 2017;16(4):273–84. https://doi.org/10.1038/nrd.2016.253

Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today. 2008;13(1–2):23–9. https://doi.org/10.1016/j.drudis.2007.09.007

Al-Sha’er MA, Taha MO. Elaborate ligand-based modeling reveals new nanomolar heat shock protein 90α inhibitors. J Chem Inf Model. 2010;50(9):1706–23. https://doi.org/10.1021/ci100222k

Chiosis G, Rodina A, Moulick K. Emerging Hsp90 inhibitors: from discovery to clinic. Anti Cancer Agents Med Chem. 2006;6(1):1–8. https://doi.org/10.2174/187152006774755483

Ragno R. Structure-based modeling of histone deacetylases inhibitors. In: Epiinformatics. Elsevier; 2016. p. 155–212. https://doi.org/10.1016/B978-0-12-802808-7.00006-X

Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37(24):4130–46. https://doi.org/10.1021/jm00050a010

Sun Z-G, Yang Y-A, Zhang Z-G, Zhu H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin Drug Discov. 2019;14(1):59–69. https://doi.org/10.1080/17460441.2019.1551355

Gupta O, Pradhan T, Chawla G. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: insight into structure-activity relationship. J Mol Struct. 2023;1274:134487. https://doi.org/10.1016/j.molstruc.2022.134487

Shityakov S, Förster C. Pharmacokinetic delivery and metabolizing rate of nicardipine incorporated in hydrophilic and hydrophobic cyclodextrins using two-compartment mathematical model. Sci World J. 2013;2013:131358.

https://doi.org/10.1155/2013/131358

Fukae M, Shiraishi Y, Hirota T, Sasaki Y, Yamahashi M, Takayama K, et al. Population pharmacokinetic–pharmacodynamic modeling and model-based prediction of docetaxel-induced neutropenia in Japanese patients with non-small cell lung cancer. Cancer Chemother Pharmacol. 2016;78:1013–23.

Liao M, Zhou J, Wride K, Lepley D, Cameron T, Sale M, et al. Population pharmacokinetic modeling of lucitanib in patients with advanced cancer. Eur J Drug Metab Pharmacokinet. 2022;47(5):711–23. https://doi.org/10.1007/s13318-022-00773-w

Muñoz-Galván S, Carnero A. Targeting cancer stem cells to overcome therapy resistance in ovarian cancer. Cells. 2020;9(6):1402. https://doi.org/10.3390/cells9061402.

Pernas S, Tolaney SM. HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol. 2019 Mar 19;11:1758835919833519. doi:10.1177/1758835919833519.

Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16(Suppl 1):61–70. https://doi.org/10.1634/theoncologist.2011-S1-61

Odunitan TT, Saibu OA, Apanisile BT, Omoboyowa DA, Balogun TA, Awe AV, et al. Integrating biocomputational techniques for breast cancer drug discovery via the HER-2, BCRA, VEGF and ER protein targets. Comput Biol Med. 2024 Jan 1;168:107737. https://doi.org/10.1016/j.compbiomed.2023.107737

Sahoo SK, Dash AK, Mishra SK. Investigation of binding modes of novel pyrrolobenzoxazepinone inhibitors to estrogen receptor alpha using molecular dynamics simulations and docking studies. J Biomol Struct Dyn. 2020;39(3):1001–15.

Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2000;2(2):101–12. https://doi.org/10.1038/nrc721

Koutras AK, Fountzilas G, Kalogeras KT. The role of endocrine therapy in the management of hormone receptor-positive metastatic breast cancer: an update. Cancer Treat Rev. 2019;73:22–32.

Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354(3):270–82. DOI: 10.1056/NEJMra050776

Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, et al. The dynamic structure of the estrogen receptor. J Amino Acids. 2011;2011:Article ID 812540, 7 pages. doi:10.4061/2011/812540.

https://doi.org/10.4061/2011/812540

Darwati D, Safitri AN, Ambardhani N, Mayanti T, Nurlelasari N, Kurnia D. Effectiveness and anticancer activity of a novel phenolic compound from Garcinia porrecta against the MCF-7 breast cancer cell line in vitro and in silico. Drug Des Devel Ther. 2021;15:3523–33. doi:10.2147/DDDT.S321824.

TilakVijay J, Vivek Babu K, Uma A. Virtual screening of novel compounds as potential ER-alpha inhibitors. Bioinformation. 2019 Apr 30;15(5):321–32. doi:10.6026/97320630015321.

Alamri A, Rauf A, Khalil AA, Alghamdi A, Ahmed A, Alshammari A, et al. In silico screening of marine compounds as an emerging and promising approach against estrogen receptor alpha-positive BC. Biomed Res Int. 2021;2021:9734279. doi:10.1155/2021/9734279.

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. https://doi.org/10.1038/35052073

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human BC: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82. DOI: 10.1126/science.3798106

Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54. https://doi.org/10.1038/nrc1609

Schlotter, C.M., Vogt, U., Allgayer, H. et al. Molecular targeted therapies for breast cancer treatment. Breast Cancer Res 10, 211 (2008). https://doi.org/10.1186/bcr2112Moradipoodeh B, Jamalan M, Zeinali M, Fereidoonnezhad M, Mohammadzadeh G. In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human BC cell line. Mol Biol Rep. 2019;46(6):6361–70. doi:10.1007/s11033-019-05080-3.

Li J, Wang H, Li J, Bao J, Wu C. Discovery of a potential HER2 inhibitor from natural products for the treatment of HER2-positive BC. Int J Mol Sci. 2016;17(7):1055. doi:10.3390/ijms17071055.

Balogun TA, Iqbal MN, Saibu OA, Akintubosun MO, Lateef OM, Nneka UC, et al. Discovery of potential HER2 inhibitors from Mangifera indica for the treatment of HER2-Positive BC: an integrated computational approach. J Biomol Struct Dyn. 2022;40(23):12772–84. doi:10.1080/07391102.2021.1975570.

Tung NM, Garber JE. BRCA1/2 testing: therapeutic implications for BC management. Br J Cancer. 2018;119:141–52. doi:10.1038/s41416-018-0127-5.

Turk AA, Wisinski KB. PARP inhibitors in BC: bringing synthetic lethality to the bedside. Cancer. 2018;124(12):2498–506. doi:10.1002/cncr.31307.

Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer science. 2004 Nov;95(11):866-71.

https://doi.org/10.1111/j.1349-7006.2004.tb02195.x

Lord AJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. doi:10.1126/science.aam7344.

Prabhavathi H, D

asegowda KR, Renukananda KH, Lingaraiu K, Naika HR. Exploration and evaluation of bioactive phytocompounds against BRA proteins by in silico approach. J Biomol Struct Dyn. 2020;1–15. doi:10.1080/07391102.2020.1790424.

Ibrahim A, Nureni I, Aiyelabegan A, Abdulbaki A, Muhammad S, Oyeniyin O. Discovery of potential phytochemicals from Carica papaya targeting BRCA-1 in BC treatment. Appl Biochem Biotechnol. 2023. doi:10.1007/12010-023-04473-2.

Brahimi-Horn MC, Pouyssegur J. HIF at a glance. J Cell Sci. 2009;122(Pt 8):1055–7. doi:10.1242/jcs.040566.

Liu YR, Jiang YZ, Xu XE, Yu KD, Jin X, Hu X, et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative BC. Breast Cancer Res. 2015;17(1):239. doi:10.1186/s13058-015-0642-8.

Verma R, Gupta P, Nagarajan A. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Pharm Anal Acta. 2014;5(9):1–7. https://doi.org/10.1161/CIRCRESAHA.113.301787

Wu X, Li Y, Chen L, Chen J. The roles of vascular endothelial growth factor in tumor immune escape: implications for therapeutic intervention. Discov Med. 2016;21(114):341–7.

Spratlin JL, Cohen RB, Eadens M. Tumor angiogenesis and VEGF inhibition. Curr Oncol Rep. 2010;12(3):235–43.

https://doi.org/10.1007/s11912-010-0149-5

Zhang Y, Zheng J, Liang S, Chen J. Discovery of novel small-molecule inhibitors targeting vascular endothelial growth factor receptor 2 by combining ligand and structure-based approaches. J Chem Inf Model. 2018;58(3):647–59. https://doi.org/10.1186/s13045-022-01310-7

Elhady SS, Eltamany EE, Shaaban AE, Bagalagel AA, Muhammad YA, El-Sayed NM, et al. Jaceidin flavonoid isolated from Chiliadenus montanus attenuates tumor progression in mice via VEGF inhibition: In vivo and in silico studies. Plants. 2020 Aug 14;9(8):1031. doi: 10.3390/plants9081031.

Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78. https://doi.org/10.1038/nrc3181

Abo Elmaaty A, Darwish KM, Chrouda A, Boseila AA, Tantawy MA, Elhady SS, et al. In silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega. 2022;7(1):875–899. doi: 10.1021/acsomega.1c05519.

Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-aided ligand discovery for estrogen receptor alpha. International Journal of Molecular Sciences. 2020 Jun 12;21(12):4193. https://doi.org/10.3390/ijms21124193

Pasrija P, Jha P, Upadhyaya P, Khan MS, Chopra M. Machine learning and artificial intelligence: a paradigm shift in big data-driven drug design and discovery. Current Topics in Medicinal Chemistry. 2022 Aug 1;22(20):1692-727. https://doi.org/10.2174/1568026622666220701091339

Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Computers in Biology and Medicine. 2022 Nov 1;150:106140. https://doi.org/10.1016/j.compbiomed.2022.106140

Wang K, Huang Y, Wang Y, You Q, Wang L. Recent advances from computer-aided drug design to artificial intelligence drug design. RSC Medicinal Chemistry. 2024;15(12):3978-4000. DOI: 10.51252/rcsi.v5i1.913

Brown N, Ertl P, Lewis R, Luksch T, Reker D, Schneider N. Artificial intelligence in chemistry and drug design. Journal of Computer-Aided Molecular Design. 2020 Jul;34:709-15. https://doi.org/10.1007/s10822-020-00317-x

Duo L, Liu Y, Ren J, Tang B, Hirst JD. Artificial intelligence for small molecule anticancer drug discovery. Expert Opinion on Drug Discovery. 2024 Jun 20:1-6. https://doi.org/10.1080/17460441.2024.2367014

Kumar R, Saha P. A review on artificial intelligence and machine learning to improve cancer management and drug discovery. International Journal for Research in Applied Sciences and Biotechnology. 2022 Jun 25;9(3):149-56.

Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the lexicon of protein targets: a review on multifaceted drug discovery in the era of artificial intelligence. Molecular Pharmaceutics. 2024 Mar 11;21(4):1563-90. https://doi.org/10.1021/acs.molpharmaceut.3c01161

Siddiqui B, Yadav CS, Akil M, Faiyyaz M, Khan AR, Ahmad N, Hassan F, Azad MI, Owais M, Nasibullah M, Azad I. Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules. Available at SSRN 4752923. https://doi.org/10.2174/0113862073334062241015043343

Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity. 2021 Aug;25:1315-60. https://doi.org/10.1007/s11030-021-10217-3

Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Molecular diversity. 2021 Oct 23:1-21. https://doi.org/10.1007/s11030-021-10326-z

Dutta S, Bose K. Remodelling structure-based drug design using machine learning. Emerging Topics in Life Sciences. 2021 May 14;5(1):13-27. https://doi.org/10.1042/ETLS20200253

Downloads

Published

2025-05-31

How to Cite

1.
Aggarwal S, Das S, Bansal P, Chaudhary T. Harnessing Computational Drug Design for Innovative Breast Cancer Therapeutics. J Neonatal Surg [Internet]. 2025May31 [cited 2025Sep.24];14(26S):961-78. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6876