Protective effect of carvedilol versus vitamin E against MSG-induced ataxia model in rats through NRF2 modulation, Antioxidant and Antiapoptotic Effects
Keywords:
Cerebellar ataxia, carvedilol, vitamin E, antioxidant, MSGAbstract
Background: Carvedilol (CAR) is an adrenoreceptor antagonist used in cardiovascular disease management, such as congestive heart failure and hypertension. In addition to α and β receptor blockade, carvedilol shows additional antioxidant and anti-apoptotic effects. It has been included in research studies for many neurological conditions, but its utility in cerebellar ataxia has not been explored yet. This study sought to investigate the protective impact of carvedilol on cerebellar ataxia in rats using Monosodium glutamate (MSG). we aimed to evaluate its antiapoptotic and antioxidant properties, and to further compare its effect with vitamin E (Vit E).
Materials and methods: For induction of ataxia, MSG (6g/kg/d) was injected intraperitoneally for 10 days. Twenty-four Sprague Dawley male rats, weight (180–200 g), age (8–10 weeks) were split randomly into four groups: control group, MSG group (6g/kg/day, Ip for 10 days), MSG + Vit E (250 mg/kg/day), orally for ten days, MSG+CAR (2 mg/kg/day), orally for 10 days. At the end of drug administration, behavioral assessment by rotarod was evaluated, and cerebellar tissue samples were collected from the sacrificed animals for histopathological, biochemical, and immunohistochemical studies.
Results: The behavioral tests proved that treatment of rats with vitamin E has improved locomotor behavior in comparison to the MSG group. The rats showed increased latency and a decrease in the number of falls from the rotarod. In addition, biochemical analysis showed improvement in the vitamin E-treated rats, which was confirmed by increased GSH levels, reduction in the total ROS, and increase in NRF2 gene expression. The histopathological assessment with H&E showed a regain of almost normal histopathological features of the cerebellar neurons with a mild loss of Purkinje cells. Immune histochemical staining of cerebellar samples showed reduced positive staining of caspase-3 in most Purkinje cells. Carvedilol caused a significant improvement in the treated rats regarding all these parameters, which was less evident than the Vit E results.
Conclusion: Both Vit E and carvedilol exhibited a protective effect in ataxia induced by MSG via upregulation of the NRF2 expression, exerting antioxidant effects and inhibiting apoptotic pathways.
Downloads
Metrics
References
Abbarin, D., Vafaei, A. A., Rashidy Pour, A., Bandegi, A. R., Taherian, A., Rahmani, M., Jarrahi, M., & Sedaghat, K. (2023). Vitamins D and E Improve Valproic Acid-Induced Autistic-Like Behaviors and Oxidative Stress in the Rat Offspring. Middle East J Rehabil Health Stud, 10(2), 129627. https://doi.org/10.5812/mejrh-129627
Abogresha, N., Atta, R. M., Ameen, A. M., Korayem, H. E., & El-Wazir, Y. (2019). Experimental research Adipose tissue-derived mesenchymal stem cells have better restorative capacity than bone marrow-derived cells in a cerebellar ataxic rat model. https://doi.org/10.5114/aoms.2020.100833
Akindele, A. J., Oludadepo, G. O., Amagon, K. I., Singh, D., & Osiagwu, D. D. (2018). Protective effect of carvedilol alone and coadministered with diltiazem and prednisolone on doxorubicin and 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Pharmacology Research & Perspectives, 6(1), e00381. https://doi.org/10.1002/PRP2.381
Akintoye, O. O., Ajibare, A. J., Oriyomi, I. A., Olofinbiyi, B. A., Yusuf, G. O., Afuye, D. C., Babalola, T. K., Faturoti, O. E., Oludipe, S., & Owoyele, V. B. (2023). Synergistic action of carvedilol and clomiphene in mitigating the behavioral phenotypes of letrozole-model of PCOS rats by modulating the NRF2/NFKB pathway. Life Sciences, 324, 121737. https://doi.org/10.1016/J.LFS.2023.121737
Aminuddin, M., Partadiredja, G., & Sari, D. C. R. (2015). The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate. Anatomical Science International, 90(2), 75–81. https://doi.org/10.1007/S12565-014-0233-2/TABLES/4
Ashraf, S., Yasoob, M., Amin, M., Asad Khan, M., Hussain Bukhari, M., & Effects, B. M. (2017). Effects of Monosodium Glutamate on Purkinje Cells of the Cerebellum of Adult Albino Rats. Annals of Punjab Medical College, 11(1), 1–5. https://doi.org/10.29054/APMC/2017.235
Baraka, S. A., Tolba, M. F., Elsherbini, D. A., El-Naga, R. N., Awad, A. S., & El-Demerdash, E. (2021). Rosuvastatin and low-dose carvedilol combination protects against isoprenaline-induced myocardial infarction in rats: Role of PI3K/Akt/Nrf2/HO-1 signalling. Clinical and Experimental Pharmacology & Physiology, 48(10), 1358–1370. https://doi.org/10.1111/1440-1681.13535
Bolotta, A., Pini, A., Abruzzo, P. M., Ghezzo, A., Modesti, A., Gamberi, T., Ferreri, C., Bugamelli, F., Fortuna, F., Vertuani, S., Manfredini, S., Zucchini, C., & Marini, M. (2020). Highlight article: Effects of tocotrienol supplementation in Friedreich’s ataxia: A model of oxidative stress pathology. Experimental Biology and Medicine, 245(3), 201–212. https://doi.org/10.1177/1535370219890873/ASSET/IMAGES/LARGE/10.1177_1535370219890873-FIG6.JPEG
Buckley, E., Mazzà, C., & McNeill, A. (2018). A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait and Posture, 60(November 2017), 154–163. https://doi.org/10.1016/j.gaitpost.2017.11.024
Campbell, A. (2014). Monosodium Glutamate (MSG). Encyclopedia of Toxicology: Third Edition, 391–392. https://doi.org/10.1016/B978-0-12-386454-3.00040-3
Chaudhary, G., Sinha, K., & Gupta, Y. K. (2003). Protective effect of exogenous administration of α-tocopherol in middle cerebral artery occlusion model of cerebral ischemia in rats. Fundamental and Clinical Pharmacology, 17(6), 703–707. https://doi.org/10.1046/j.0767-3981.2003.00209.x
Church, K. M., Henalt, R., Baker, E., Smith, G. L., Brennan, M. T., & Joseph, J. (2015). Comparison of metoprolol succinate versus carvedilol in time to cardiovascular admission in a Veterans Affairs healthcare system: An observational study. American Journal of Health-System Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 72(23 Suppl 3), S183–S190. https://doi.org/10.2146/SP150029
da Cunha Germano, B. C., de Morais, L. C. C., Idalina Neta, F., Fernandes, A. C. L., Pinheiro, F. I., do Rego, A. C. M., Araújo Filho, I., de Azevedo, E. P., de Paiva Cavalcanti, J. R. L., Guzen, F. P., & Cobucci, R. N. (2023). Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. International Journal of Molecular Sciences, 24(13), 11191. https://doi.org/10.3390/IJMS241311191/S1
Eid, B. G., & Abdel-Naim, A. B. (2020). Piceatannol Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Modulation of Nrf2/HO-1/NFκB Axis. Frontiers in Pharmacology, 11. https://doi.org/10.3389/FPHAR.2020.614897
Farhat, F., Nofal, S., Raafat, E. M., & Eissa Ahmed, A. A. (2021). Akt / GSK3β / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology, 196(February). https://doi.org/10.1016/j.neuropharm.2021.108654
Gao, W., Xiao, C., Hu, J., Chen, B., Wang, C., Cui, B., Deng, P., Yang, J., & Deng, Z. (2018). Qing brick tea (QBT) aqueous extract protects monosodium glutamate-induced obese mice against metabolic syndrome and involves up-regulation Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) antioxidant pathway. Biomedicine and Pharmacotherapy, 103(April), 637–644. https://doi.org/10.1016/j.biopha.2018.04.043
Hazzaa, S. M., Abdelaziz, S. A. M., Eldaim, M. A. A., Abdel-Daim, M. M., & Elgarawany, G. E. (2020). Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress. Nutrients 2020, Vol. 12, Page 1028, 12(4), 1028. https://doi.org/10.3390/NU12041028
He, W., Xu, Y., Ren, X., Xiang, D., Lei, K., Zhang, C., & Liu, D. (2019). Vitamin E Ameliorates Lipid Metabolism in Mice with Nonalcoholic Fatty Liver Disease via Nrf2/CES1 Signaling Pathway. Digestive Diseases and Sciences, 64(11), 3182–3191. https://doi.org/10.1007/s10620-019-05657-9
Idriss, M., Hodroj, M. H., Fakhoury, R., & Rizk, S. (2020). Beta-Tocotrienol Exhibits More Cytotoxic Effects than Gamma-Tocotrienol on Breast Cancer Cells by Promoting Apoptosis via a P53-Independent PI3-Kinase Dependent Pathway. Biomolecules 2020, Vol. 10, Page 577, 10(4), 577. https://doi.org/10.3390/BIOM10040577
Kamal, R. E., Menze, E., Albohy, A., Ahmed, H. I., & Azab, S. S. (2022). Neuroprotective repositioning and anti-tau effect of carvedilol on rotenone induced neurotoxicity in rats: Insights from an insilico& in vivo anti-Parkinson’s disease study. European Journal of Pharmacology, 932, 175204. https://doi.org/10.1016/J.EJPHAR.2022.175204
Kesherwani, R., Bhoumik, S., Kumar, R., & Rizvi, S. I. (2024). Monosodium Glutamate Even at Low Dose May Affect Oxidative Stress, Inflammation and Neurodegeneration in Rats. Indian Journal of Clinical Biochemistry: IJCB, 39(1), 101–109. https://doi.org/10.1007/S12291-022-01077-1
Korayem, H. E., Abdo, M., Naim, M. M., Yones, S. E., & Hosny, S. (2014). Potential Therapeutic Effect of Hematopoietic Stem Cells on Cerebellar Ataxia in Adult Female Rats Subjected to Cerebellar Damage by Monosodium Glutamate. Journal of Neurology & Neurophysiology, 5(6), 1–7. https://doi.org/10.4172/2155-9562.1000240
Liao, S., Omage, S. O., Börmel, L., Kluge, S., Schubert, M., Wallert, M., & Lorkowski, S. (2022). Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants 2022, Vol. 11, Page 1785, 11(9), 1785. https://doi.org/10.3390/ANTIOX11091785
Magadmi, R. M., Alsulaimani, M. A., Al-Rafiah, A. R., & Esmat, A. (2021). The Neuroprotective Effect of Carvedilol on Diabetic Neuropathy: An In Vitro Study. Wiley Online LibraryRM Magadmi, MA Alsulaimani, AR Al-Rafiah, A EsmatJournal of Diabetes Research, 2021•Wiley Online Library, 2021. https://doi.org/10.1155/2021/6927025
Martami, F., & Holton, K. F. (2023). Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023, Vol. 15, Page 3952, 15(18), 3952. https://doi.org/10.3390/NU15183952
Mathew, S., & Joy, K. P. (2020). Impact of Monosodium Glutamate and Corticosterone in the Hippocampus: Glucocorticoid Regulation and Caspase-3 mediated Microvascular and Neuronal Apoptosis. The FASEB Journal, 34(S1), 1–1. https://doi.org/10.1096/FASEBJ.2020.34.S1.02786
Mishra, P., Paital, B., Jena, S., Swain, S. S., Kumar, S., Yadav, M. K., Chainy, G. B. N., & Samanta, L. (2019). Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-43320-5
Moldovan, O. L., Vari, C. E., Tero-Vescan, A., Cotoi, O. S., Cocuz, I. G., Tabaran, F. A., Pop, R., Fülöp, I., Chis, R. F., Lungu, I. A., & Rusu, A. (2023). Potential Defence Mechanisms Triggered by Monosodium Glutamate Sub-Chronic Consumption in Two-Year-Old Wistar Rats. Nutrients, 15(20). https://doi.org/10.3390/NU15204436/S1
Ngo, V., & Duennwald, M. L. (2022). Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants, 11(12). https://doi.org/10.3390/ANTIOX11122345
Niture, S. K., & Jaiswal, A. K. (2012). Nrf2 Protein Up-regulates Antiapoptotic Protein Bcl-2 and Prevents Cellular Apoptosis. The Journal of Biological Chemistry, 287(13), 9873. https://doi.org/10.1074/JBC.M111.312694
Onaolapo, O. J., Onaolapo, A. Y., Akanmu, M. A., & Gbola, O. (2016). Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology, 23(3), 147–156. https://doi.org/10.1016/j.pathophys.2016.05.001
Owoeye, O., & Salami, O. A. (2017). Monosodium glutamate toxicity: Sida acuta leaf extract ameliorated brain histological alterations, biochemical and haematological changes in wistar rats. African Journal of Biomedical Research, 20(2), 173–182. https://www.ajol.info/index.php/ajbr/article/view/167139
Prastiwi, D., Djunaidi, A., & Partadiredja, G. (2015). High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Human and Experimental Toxicology, 34(11), 1171–1179. https://doi.org/10.1177/0960327115572706
Rizvi, S., Raza, S. T., Ahmed, F., Ahmad, A., Abbas, S., & Mahdi, F. (2014). The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos University Medical Journal, 14(2), e157. /pmc/articles/PMC3997530/
Rychter, A. M., Hryhorowicz, S., Słomski, R., Dobrowolska, A., & Krela-Kaźmierczak, I. (2022). Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity – A narrative review. Clinical Nutrition, 41(7), 1557–1565. https://doi.org/10.1016/J.CLNU.2022.04.032
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols 2008 3:6, 3(6), 1101–1108. https://doi.org/10.1038/nprot.2008.73
Sharma, V., Kaur, A., & Singh, T. G. (2020). Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomedicine and Pharmacotherapy, 129. https://doi.org/10.1016/J.BIOPHA.2020.110373
Sreeganga S, Merlin N J, & Dharan, S. S. (2023). Issue 4 www.jetir.org (ISSN-2349-5162). JETIR2304429 Journal of Emerging Technologies and Innovative Research, 10. www.jetir.org
Tolga Kafadar, M., & Ali Gök, M. (2022). Effects of Carvedilol on liver ischemia-reperfusion injury in rats. https://doi.org/10.14744/tjtes.2021.57824
Wang, M., Li, Y., Gao, Y., Li, Q., Cao, Y., Shen, Y., Chen, P., Yan, J., & Li, J. (2021). Vitamin E regulates bovine granulosa cell apoptosis via NRF2-mediated defence mechanism by activating PI3K/AKT and ERK1/2 signalling pathways. Reproduction in Domestic Animals, 56(8), 1066–1084. https://doi.org/10.1111/RDA.13950
Wang, Y. C., Lee, C. M., Lee, L. C., Tung, L. C., Hsieh-Li, H. M., Lee-Chen, G. J., & Su, M. T. (2011). Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12). Journal of Biological Chemistry, 286(24), 21742–21754. https://doi.org/10.1074/jbc.M110.160697
Yao, J., & Chen, S. R. W. (2022). R-carvedilol, a potential new therapy for Alzheimer’s disease. Frontiers in Pharmacology, 13, 1062495. https://doi.org/10.3389/FPHAR.2022.1062495/BIBTEX
Youssef2, H., Abd-Elhalim1, D. M., Hussain1, M. A., & Korayem1, H. E. (2015). Monosodium glutamate-induced cerebellar toxicity: Possible role of nitric oxide in adult albino rats. Journal of Clinical Toxicology, 05(03). https://doi.org/10.4172/2161-0495.S1.015
Zedan, R. S., Awny, M. M., Abu-Elfotuh, K., & Ali, A. A. (2024). Sesamol protects against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD) in rats’ Offsprings focused on regulating the GSK-3β/Nrf2/NF-kβ/Bax/Bcl-2 signaling pathways. Azhar International Journal of Pharmaceutical and Medical Sciences, 4(1), 40–51. https://doi.org/10.21608/AIJPMS.2023.211678.1212
Zhang, Y., Li, M., Wang, W., & He, S. (2022). Carvedilol activates nuclear factor E2-related factor 2/ antioxidant response element pathway to inhibit oxidative stress and apoptosis of retinal pigment epithelial cells induced by high glucose. Bioengineered, 13(1), 735–745. https://doi.org/10.1080/21655979.2021.2012627
Zheng, Z., Hou, F., He, G., Jiang, F., Bao, X., & Tong, M. (2023). Carvedilol Reduces the Neuronal Apoptosis after Ischemic Stroke by Modulating Activator of Transcription 3 Expression in vitro. Developmental Neuroscience, 45(2), 94–104. https://doi.org/10.1159/000527484
Ziamajidi, N., Daei, S., Khajvand-Abedini, M., Abbasalipourkabir, R., & Nourian, A. (2023). Vitamins A, C, and E Exert Anti-apoptotic Function in the Testis of Rats After Exposure to Zinc Oxide Nanoparticles. Chonnam Medical Journal, 59(1), 48. https://doi.org/10.4068/CMJ.2023.59.1.48
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.