Exploring the Role of CACNA1C, ZNF804A and SLC6A4 in Schizophrenia through Epigenomics and Bioinformatics

Authors

  • Bhargavi Ch
  • Lakshmi V

DOI:

https://doi.org/10.63682/jns.v14i30S.6978

Keywords:

Schizophrenia, CACNA1C gene, ZNF804A gene, SLC6A4 gene, Genetic association, Polymorphisms, Epigenetics, Risk factors

Abstract

Schizophrenia (SCZ) is a complex neuropsychiatric condition in which genetic vulnerability interacts with environmental exposures to influence disease risk and clinical outcomes. Emerging non-genetic causes include early-life stress, substance use and urban living environments, which have been found to interact with inherent genetic predisposition. Recent advances in epigenomics and bioinformatics have illuminated the mechanisms through which these environmental insults may alter gene expression, particularly via DNA methylation, chromatin remodeling and transcription factor binding. Genes such as CACNA1C, ZNF804A and SLC6A4 exemplify loci where regulatory changes may mediate gene-environment interactions. Bioinformatics tools like GTEx, ENCODE, 3DSNP, and methylation datasets from epigenome-wide association studies (EWAS) now provide special perspectives into these molecular processes. This review highlights key epigenetic mechanisms linking environmental exposures to SCZ pathogenesis and explores how integrative computational analyses are enhancing our understanding of this complex disorder. A deeper appreciation of gene- environment interactions may ultimately inform personalized interventions and risk stratification in SCZ care.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet [Internet]. 2008 Sep [cited 2023 Dec 1];40(9):1053–5. Available from: https://www.nature.com/articles/ng.201

Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014 Jul 24;511(7510):421–7.

Karl T, Arnold JC. Schizophrenia: a consequence of gene-environment interactions? Front Behav Neurosci [Internet]. 2014 Dec 23 [cited 2025 May 27];8. Available from: https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2014.00435/full

Wahbeh MH, Avramopoulos D. Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes (Basel) [Internet]. 2021 Nov 23 [cited 2025 May 27];12(12):1850. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8702084/

Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants [Internet]. 2024 Jun [cited 2025 May 30];13(6):709. Available from: https://www.mdpi.com/2076-3921/13/6/709

Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Progress in Neurobiology [Internet]. 2012 Oct 1 [cited 2024 Mar 12];99(1):1–14. Available from: https://www.sciencedirect.com/science/article/pii/S0301008212000998

Cai W, Zhou X, Chen Y, Gui S, Xu Y, Zhang J, et al. Association between CACNA1C gene polymorphism rs1006737 and risk of Bipolar disorder: a meta-analysis [Internet]. In Review; 2024 [cited 2025 May 21]. Available from: https://www.researchsquare.com/article/rs-3987637/v1

Alsheikh AM. ZNF804A variants relation to schizophrenia: a systematic review. International Journal Of Community Medicine And Public Health [Internet]. 2022 Jul 27 [cited 2024 Jan 12];9(8):3297–303. Available from: https://www.ijcmph.com/index.php/ijcmph/article/view/9930

Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry [Internet]. 2017 Jul [cited 2024 Dec 1];22(7):944–53. Available from: https://www.nature.com/articles/mp201719

Bednarova A, Habalova V, Krivosova M, Marcatili M, Tkac I. Association Study of BDNF, SLC6A4, and FTO Genetic Variants with Schizophrenia Spectrum Disorders. Journal of Personalized Medicine [Internet]. 2023 Apr [cited 2023 Jun 21];13(4):658. Available from: https://www.mdpi.com/2075-4426/13/4/658

Ikegame T, Bundo M, Okada N, Murata Y, Koike S, Sugawara H, et al. Promoter activity-based case-control association study on SLC6A4 highlighting hypermethylation and altered amygdala volume in male patients with schizophrenia [Internet]. bioRxiv; 2020 [cited 2025 May 16]. p. 2020.05.06.058792. Available from: https://www.biorxiv.org/content/10.1101/2020.05.06.058792v1

Vijayan N, Iwayama Y, Koshy L, Natarajan C, Nair C, Allencherry PM, et al. Evidence of association of serotonin transporter gene polymorphisms with schizophrenia in a South Indian population. Journal of Human Genetics [Internet]. 2009 [cited 2023 Jun 30]; Available from: https://consensus.app/details/these-results-suggest-role-slc6a4-schizophrenia-possibly-vijayan/56bb337493595658b891fa131e9f8899/

Baron M. Genetics of schizophrenia: I. Familial patterns and mode of inheritance. Biological Psychiatry [Internet]. 1986 Sep 1 [cited 2023 Jun 30];21(11):1051–66. Available from: https://www.biologicalpsychiatryjournal.com/article/0006-3223(86)90286-6/abstract

Zhang H, Khan A, Kushner SA, Rzhetsky A. Dissecting schizophrenia phenotypic variation: the contribution of genetic variation, environmental exposures, and gene–environment interactions. Schizophr [Internet]. 2022 May 10 [cited 2025 May 27];8(1):1–5. Available from: https://www.nature.com/articles/s41537-022-00257-5

van Os J, Rutten BP, Poulton R. Gene-Environment Interactions in Schizophrenia: Review of Epidemiological Findings and Future Directions. Schizophrenia Bulletin [Internet]. 2008 Nov 1 [cited 2025 May 27];34(6):1066–82. Available from: https://doi.org/10.1093/schbul/sbn117

Narayan CL, Shikha D, Shekhar S. Schizophrenia in identical twins. Indian J Psychiatry [Internet]. 2015 [cited 2025 May 27];57(3):323–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623659/

Tsuang MT, Stone WS, Faraone SV. Genes, environment and schizophrenia. Br J Psychiatry Suppl. 2001 Apr;40:s18-24.

Pugliese V, Bruni A, Carbone EA, Calabrò G, Cerminara G, Sampogna G, et al. Maternal stress, prenatal medical illnesses and obstetric complications: Risk factors for schizophrenia spectrum disorder, bipolar disorder and major depressive disorder. Psychiatry Research [Internet]. 2019 Jan 1 [cited 2025 May 27];271:23–30. Available from: https://www.sciencedirect.com/science/article/pii/S0165178118306012

Schmitt A, Falkai P, Papiol S. Neurodevelopmental disturbances in schizophrenia: evidence from genetic and environmental factors. J Neural Transm [Internet]. 2023 Mar 1 [cited 2024 Jan 31];130(3):195–205. Available from: https://doi.org/10.1007/s00702-022-02567-5

Zhang H, Khan A, Kushner SA, Rzhetsky A. Dissecting schizophrenia phenotypic variation: the contribution of genetic variation, environmental exposures, and gene–environment interactions. Schizophr [Internet]. 2022 May 10 [cited 2024 Feb 27];8(1):1–5. Available from: https://www.nature.com/articles/s41537-022-00257-5

Sonego AB, Prado DS, Uliana DL, Cunha TM, Grace AA, Resstel LBM. Pioglitazone attenuates behavioral and electrophysiological dysfunctions induced by two-hit model of schizophrenia in adult rodent offspring. European Neuropsychopharmacology [Internet]. 2024 Dec 1 [cited 2025 May 29];89:28–40. Available from: https://www.sciencedirect.com/science/article/pii/S0924977X24007272

Billard JM, Lahogue C, Boulouard M, Menager F, Freret T, Billard JM, et al. A new 2-hit model combining serine racemase deletion and3 maternal separation displays behavioral and cognitive4 deficits associated with schizophrenia [Internet]. 2024 [cited 2025 May 29]. Available from: https://hal.science/hal-04627091

Allswede DM, Cannon TD. Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Development and Psychopathology [Internet]. 2018 Aug [cited 2025 May 27];30(3):1157–78. Available from: https://www.cambridge.org/core/journals/development-and-psychopathology/article/abs/prenatal-inflammation-and-risk-for-schizophrenia-a-role-for-immune-proteins-in-neurodevelopment/6B8DCC5ED1C343D79D4140B5A207599B

Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol [Internet]. 2021 Sep [cited 2025 May 27];17(9):564–79. Available from: https://www.nature.com/articles/s41582-021-00530-8

Done DJ, Johnstone EC, Frith CD, Golding J, Shepherd PM, Crow TJ. Complications of pregnancy and delivery in relation to psychosis in adult life: data from the British perinatal mortality survey sample. BMJ [Internet]. 1991 Jun 29 [cited 2025 May 28];302(6792):1576–80. Available from: https://www.bmj.com/content/302/6792/1576

Jones PB, Rantakallio P, Hartikainen AL, Isohanni M, Sipila P. Schizophrenia as a Long-Term Outcome of Pregnancy, Delivery, and Perinatal Complications: A 28-Year Follow-Up of the 1966 North Finland General Population Birth Cohort. AJP [Internet]. 1998 Mar [cited 2025 May 28];155(3):355–64. Available from: https://psychiatryonline.org/doi/full/10.1176/ajp.155.3.355

Jablensky AV, Morgan V, Zubrick SR, Bower C, Yellachich LA. Pregnancy, Delivery, and Neonatal Complications in a Population Cohort of Women With Schizophrenia and Major Affective Disorders. AJP [Internet]. 2005 Jan [cited 2025 May 28];162(1):79–91. Available from: https://psychiatryonline.org/doi/full/10.1176/appi.ajp.162.1.79

Cannon M, Jones PB, Murray RM. Obstetric Complications and Schizophrenia: Historical and Meta-Analytic Review. AJP [Internet]. 2002 Jul [cited 2025 May 28];159(7):1080–92. Available from: https://psychiatryonline.org/doi/full/10.1176/appi.ajp.159.7.1080

Geddes JR, Verdoux H, Takei N, Lawrie SM, Bovet P, Eagles JM, et al. Schizophrenia and Complications of Pregnancy and Labor: An Individual Patient Data Meta-analysis. Schizophrenia Bulletin [Internet]. 1999 Jan 1 [cited 2025 May 28];25(3):413–23. Available from: https://doi.org/10.1093/oxfordjournals.schbul.a033389

Fabre C, Pauly V, Baumstarck K, Etchecopar-Etchart D, Orleans V, Llorca PM, et al. Pregnancy, delivery and neonatal complications in women with schizophrenia: a national population-based cohort study. The Lancet Regional Health – Europe [Internet]. 2021 Nov 1 [cited 2025 May 28];10. Available from: https://www.thelancet.com/journals/lanepe/article/PIIS2666-7762(21)00186-1/fulltext

Chan JKN, Lee KCK, Correll CU, So YK, Chan CY, Wong CSM, et al. Adverse obstetric and neonatal outcomes associated with maternal schizophrenia-spectrum disorders and prenatal antipsychotic use: a meta-analysis of 37,214,330 pregnancy deliveries and propensity-score weighted population-based cohort study assessing confounder dependency of risk estimates. Mol Psychiatry [Internet]. 2025 Mar [cited 2025 May 28];30(3):954–67. Available from: https://www.nature.com/articles/s41380-024-02723-1

Nunes RG, Carrilho CG, Alves GS, Malaspina D, Kahn JP, Nardi AE, et al. Comparison of early risk factors between healthy siblings and subjects with schizophrenia and bipolar disorder. Front Psychiatry [Internet]. 2024 Apr 30 [cited 2025 May 28];15. Available from: https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1374216/full

Pelayo-Terán JM, Pérez-Iglesias R, Mata I, Carrasco-Marín E, Vázquez-Barquero JL, Crespo-Facorro B. Catechol-O-Methyltransferase (COMT) Val158Met variations and cannabis use in first-episode non-affective psychosis: Clinical-onset implications. Psychiatry Research [Internet]. 2010 Oct 30 [cited 2025 May 27];179(3):291–6. Available from: https://www.sciencedirect.com/science/article/pii/S016517810900328X

Estrada G, Fatjó-Vilas M, Muñoz MJ, Pulido G, Miñano MJ, Toledo E, et al. Cannabis use and age at onset of psychosis: further evidence of interaction with COMT Val158Met polymorphism. Acta Psychiatrica Scandinavica [Internet]. 2011 [cited 2025 May 27];123(6):485–92. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0447.2010.01665.x

Zammit S, Owen MJ, Evans J, Heron J, Lewis G. Cannabis, COMT and psychotic experiences. The British Journal of Psychiatry [Internet]. 2011 Nov [cited 2025 May 27];199(5):380–5. Available from: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/cannabis-comt-and-psychotic-experiences/933997569274F0AF17FD3BE0451399D6

Lodhi RJ, Wang Y, Rossolatos D, MacIntyre G, Bowker A, Crocker C, et al. Investigation of the COMT Val158Met variant association with age of onset of psychosis, adjusting for cannabis use. Brain and Behavior [Internet]. 2017 [cited 2025 May 27];7(11):e00850. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/brb3.850

Bosia M, Buonocore M, Bechi M, Stere LM, Silvestri MP, Inguscio E, et al. Schizophrenia, cannabis use and Catechol-O-Methyltransferase (COMT): Modeling the interplay on cognition. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet]. 2019 Jun 8 [cited 2025 May 27];92:363–8. Available from: https://www.sciencedirect.com/science/article/pii/S0278584618307206

Grechuk K, Azizi H, Sharma V, Khan T, Jolayemi A, Grechuk K, et al. Cannabis, Schizophrenia Risk and Genetics: A Case Report of a Patient With Homozygous Valine Catechol-O-Methyltransferase Polymorphism. Cureus [Internet]. 2021 Jun 18 [cited 2025 May 28];13(6). Available from: https://www.cureus.com/articles/54315-cannabis-schizophrenia-risk-and-genetics-a-case-report-of-a-patient-with-homozygous-valine-catechol-o-methyltransferase-polymorphism

Fowler IL, Carr VJ, Carter NT, Lewin TJ. Patterns of Current and Lifetime Substance Use in Schizophrenia. Schizophrenia Bulletin [Internet]. 1998 Jan 1 [cited 2025 May 28];24(3):443–55. Available from: https://doi.org/10.1093/oxfordjournals.schbul.a033339

Blanchard JJ, Brown SA, Horan WP, Sherwood AR. Substance use disorders in schizophrenia: Review, integration, and a proposed model. Clinical Psychology Review [Internet]. 2000 Mar 1 [cited 2025 May 28];20(2):207–34. Available from: https://www.sciencedirect.com/science/article/pii/S0272735899000331

Khokhar JY, Dwiel LL, Henricks AM, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophrenia Research [Internet]. 2018 Apr 1 [cited 2025 May 28];194:78–85. Available from: https://www.sciencedirect.com/science/article/pii/S0920996417302037

Adan A, Marquez-Arrico JE, Río-Martínez L, Navarro JF, Martinez-Nicolas A. Circadian rhythmicity in schizophrenia male patients with and without substance use disorder comorbidity. Eur Arch Psychiatry Clin Neurosci [Internet]. 2024 Mar 1 [cited 2025 May 28];274(2):279–90. Available from: https://doi.org/10.1007/s00406-023-01560-7

Paganin W, Signorini S. Salivary cortisol in Schizophrenia: a selective review and meta-analysis of controlled studies of the past decade. Biomarkers in Neuropsychiatry [Internet]. 2024 Dec 1 [cited 2025 May 28];11:100098. Available from: https://www.sciencedirect.com/science/article/pii/S2666144624000169

Misiak B, Piotrowski P, Beszłej JA, Kalinowska S, Chęć M, Samochowiec J. Metabolic Dysregulation and Psychosocial Stress in Patients with Schizophrenia Spectrum Disorders: A Case-Control Study. Journal of Clinical Medicine [Internet]. 2020 Dec [cited 2025 May 29];9(12):3822. Available from: https://www.mdpi.com/2077-0383/9/12/3822

Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophrenia Bulletin [Internet]. 2018 Aug 20 [cited 2025 May 30];44(5):973–82. Available from: https://doi.org/10.1093/schbul/sby024

Severance EG, Dickerson F, Yolken RH. Complex Gastrointestinal and Endocrine Sources of Inflammation in Schizophrenia. Front Psychiatry [Internet]. 2020 Jun 16 [cited 2025 May 30];11. Available from: https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2020.00549/full

Anand N, Gorantla VR, Chidambaram SB. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells [Internet]. 2023 Jan [cited 2025 May 29];12(1):54. Available from: https://www.mdpi.com/2073-4409/12/1/54

Altamura AC, Pozzoli S, Fiorentini A, Dell’Osso B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet]. 2013 Apr 5 [cited 2025 May 29];42:63–70. Available from: https://www.sciencedirect.com/science/article/pii/S0278584612002084

Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet]. 2023 Jan 10 [cited 2025 May 29];120:110626. Available from: https://www.sciencedirect.com/science/article/pii/S027858462200118X

Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, et al. Exploring causal mechanisms of psychosis risk. Neuroscience & Biobehavioral Reviews [Internet]. 2024 Jul 1 [cited 2025 May 28];162:105699. Available from: https://www.sciencedirect.com/science/article/pii/S0149763424001684

Debs SR, Rothmond DA, Zhu Y, Weickert CS, Purves-Tyson TD. Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. Journal of Psychiatric Research [Internet]. 2024 Sep 1 [cited 2025 May 28];177:118–28. Available from: https://www.sciencedirect.com/science/article/pii/S0022395624003844

Nour MM, Liu Y, El-Gaby M, McCutcheon RA, Dolan RJ. Cognitive maps and schizophrenia. Trends in Cognitive Sciences [Internet]. 2025 Feb 1 [cited 2025 May 28];29(2):184–200. Available from: https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(24)00254-7

Neill E, Tan EJ, Toh WL, Selvendra A, Morgan VA, Rossell SL, et al. Examining which factors influence age of onset in males and females with schizophrenia. Schizophrenia Research [Internet]. 2020 Sep 1 [cited 2024 Feb 5];223:265–70. Available from: https://www.sciencedirect.com/science/article/pii/S0920996420304394

Heilbronner U, Malzahn D, Strohmaier J, Maier S, Frank J, Treutlein J, et al. A common risk variant in CACNA1C supports a sex-dependent effect on longitudinal functioning and functional recovery from episodes of schizophrenia-spectrum but not bipolar disorder. European Neuropsychopharmacology [Internet]. 2015 Dec 1 [cited 2025 May 31];25(12):2262–70. Available from: https://www.sciencedirect.com/science/article/pii/S0924977X15003077

Zhu X, Li R, Kang G, Kang Q, Rao W, Yang M, et al. CACNA1C Polymorphism (rs2283291) Is Associated with Schizophrenia in Chinese Males: A Case-Control Study. Disease Markers [Internet]. 2019 [cited 2025 May 31];2019(1):8062397. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2019/8062397

Cerasa A, Quattrone A, Piras F, Mangone G, Magariello A, Fagioli S, et al. 5-HTTLPR, anxiety and gender interaction moderates right amygdala volume in healthy subjects. Social Cognitive and Affective Neuroscience [Internet]. 2014 Oct 1 [cited 2025 May 31];9(10):1537–45. Available from: https://doi.org/10.1093/scan/nst144

Coury SM, Lombroso A, Avila-Quintero VJ, Taylor JH, Flores JM, Szejko N, et al. Systematic review and meta-analysis: Season of birth and schizophrenia risk. Schizophrenia Research [Internet]. 2023 Feb 1 [cited 2025 May 31];252:244–52. Available from: https://www.sciencedirect.com/science/article/pii/S0920996422004637

Brown AS, Patterson PH. Maternal Infection and Schizophrenia: Implications for Prevention. Schizophrenia Bulletin [Internet]. 2011 Mar 1 [cited 2025 May 31];37(2):284–90. Available from: https://doi.org/10.1093/schbul/sbq146

Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychological Medicine [Internet]. 2013 Feb [cited 2025 May 31];43(2):239–57. Available from: https://www.cambridge.org/core/journals/psychological-medicine/article/abs/prenatal-maternal-infection-neurodevelopment-and-adult-schizophrenia-a-systematic-review-of-populationbased-studies/16A33FBE1245E2EA234933B4FB4BB9F2

Albiñana C, Boelt SG, Cohen AS, Zhu Z, Musliner KL, Vilhjálmsson BJ, et al. Developmental exposure to vitamin D deficiency and subsequent risk of schizophrenia. Schizophrenia Research [Internet]. 2022 Sep 1 [cited 2025 May 31];247:26–32. Available from: https://www.sciencedirect.com/science/article/pii/S0920996421002164

Chiang M, Natarajan R, Fan X. Vitamin D in schizophrenia: a clinical review. Evid Based Mental Health [Internet]. 2016 Jan 21 [cited 2025 May 31];19(1). Available from: https://mentalhealth.bmj.com/content/19/1/6

Brown AS, Susser ES. Prenatal Nutritional Deficiency and Risk of Adult Schizophrenia. Schizophrenia Bulletin [Internet]. 2008 Nov 1 [cited 2025 May 31];34(6):1054–63. Available from: https://doi.org/10.1093/schbul/sbn096

Firth J, Carney R, Stubbs B, Teasdale SB, Vancampfort D, Ward PB, et al. Nutritional Deficiencies and Clinical Correlates in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophrenia Bulletin [Internet]. 2018 Oct 17 [cited 2025 May 31];44(6):1275–92. Available from: https://doi.org/10.1093/schbul/sbx162

Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues in Clinical Neuroscience [Internet]. 2014 Sep 30 [cited 2024 Feb 16];16(3):405–17. Available from: https://doi.org/10.31887/DCNS.2014.16.3/sakbarian

Delphin N, Aust C, Griffiths L, Fernandez F. Epigenetic Regulation in Schizophrenia: Focus on Methylation and Histone Modifications in Human Studies. Genes [Internet]. 2024 Mar [cited 2024 Oct 20];15(3):272. Available from: https://www.mdpi.com/2073-4425/15/3/272

Föcking M, Doyle B, Munawar N, Dillon ET, Cotter D, Cagney G. Epigenetic Factors in Schizophrenia: Mechanisms and Experimental Approaches. Molecular Neuropsychiatry [Internet]. 2019 Feb 15 [cited 2025 May 27];5(1):6–12. Available from: https://doi.org/10.1159/000495063

Moran P, Stokes J, Marr J, Bock G, Desbonnet L, Waddington J, et al. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plasticity [Internet]. 2016 [cited 2025 May 27];2016(1):2173748. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2016/2173748

Pries LK, Gülöksüz S, Kenis G. DNA Methylation in Schizophrenia. In: Delgado-Morales R, editor. Neuroepigenomics in Aging and Disease [Internet]. Cham: Springer International Publishing; 2017 [cited 2025 May 30]. p. 211–36. Available from: https://doi.org/10.1007/978-3-319-53889-1_12

Kiltschewskij DJ, Reay WR, Cairns MJ. Schizophrenia is associated with altered DNA methylation variance. Mol Psychiatry [Internet]. 2025 Apr [cited 2025 May 30];30(4):1383–95. Available from: https://www.nature.com/articles/s41380-024-02749-5

Tesfaye M, Spindola LM, Stavrum AK, Shadrin A, Melle I, Andreassen OA, et al. Sex effects on DNA methylation affect discovery in epigenome-wide association study of schizophrenia. Mol Psychiatry [Internet]. 2024 Aug [cited 2025 May 30];29(8):2467–77. Available from: https://www.nature.com/articles/s41380-024-02513-9

Kiltschewskij DJ, Reay WR, Geaghan MP, Atkins JR, Xavier A, Zhang X, et al. Alteration of DNA Methylation and Epigenetic Scores Associated With Features of Schizophrenia and Common Variant Genetic Risk. Biological Psychiatry [Internet]. 2024 Apr 1 [cited 2025 May 31];95(7):647–61. Available from: https://www.sciencedirect.com/science/article/pii/S0006322323014336

Marques D, Vaziri N, Greenway SC, Bousman C. DNA methylation and histone modifications associated with antipsychotic treatment: a systematic review. Mol Psychiatry [Internet]. 2025 Jan [cited 2025 May 31];30(1):296–309. Available from: https://www.nature.com/articles/s41380-024-02735-x

Delphin N, Aust C, Griffiths L, Fernandez F. Epigenetic Regulation in Schizophrenia: Focus on Methylation and Histone Modifications in Human Studies. Genes [Internet]. 2024 Mar [cited 2025 May 31];15(3):272. Available from: https://www.mdpi.com/2073-4425/15/3/272

Girdhar K, Hoffman GE, Jiang Y, Brown L, Kundakovic M, Hauberg ME, et al. Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci [Internet]. 2018 Aug [cited 2025 May 31];21(8):1126–36. Available from: https://www.nature.com/articles/s41593-018-0187-0

Abdolmaleky HM, Thiagalingam S. Chapter 14 - Pathogenic histone modifications in schizophrenia are targets for therapy. In: Peedicayil J, Grayson DR, Avramopoulos D, editors. Epigenetics in Psychiatry (Second Edition) [Internet]. Academic Press; 2021 [cited 2025 May 31]. p. 309–19. Available from: https://www.sciencedirect.com/science/article/pii/B9780128235775000064

Chen Y zhou, Zhu X mei, Lv P, Hou X kai, Pan Y, Li A, et al. Association of histone modification with the development of schizophrenia. Biomedicine & Pharmacotherapy [Internet]. 2024 Jun 1 [cited 2025 May 31];175:116747. Available from: https://www.sciencedirect.com/science/article/pii/S0753332224006310

Martínez-Peula O, Morentin B, Callado LF, Meana JJ, Rivero G, Ramos-Miguel A. Permissive epigenetic regulatory mechanisms at the histone level are enhanced in postmortem dorsolateral prefrontal cortex of individuals with schizophrenia. Journal of Psychiatry and Neuroscience [Internet]. 2024 Feb 1 [cited 2025 May 31];49(1):E35–44. Available from: https://www.jpn.ca/content/49/1/E35

Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain [Internet]. 2016 Sep 5 [cited 2025 May 31];9(1):83. Available from: https://doi.org/10.1186/s13041-016-0263-x

Duan J. Chapter 14 - Chromatin modification and remodeling in schizophrenia. In: Binda O, editor. Chromatin Signaling and Neurological Disorders [Internet]. Academic Press; 2019 [cited 2025 May 31]. p. 303–30. (Translational Epigenetics; vol. 12). Available from: https://www.sciencedirect.com/science/article/pii/B9780128137963000146

Girdhar K, Hoffman GE, Bendl J, Rahman S, Dong P, Liao W, et al. Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nat Neurosci [Internet]. 2022 Apr [cited 2025 May 31];25(4):474–83. Available from: https://www.nature.com/articles/s41593-022-01032-6

Periyasamy S, Youssef P, John S, Thara R, Mowry BJ. Genetic interactions of schizophrenia using gene-based statistical epistasis exclusively identify nervous system-related pathways and key hub genes. Front Genet [Internet]. 2024 Jan 8 [cited 2025 May 27];14. Available from: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2023.1301150/full

Bearer EL, Mulligan BS. Epigenetic Changes Associated with Early Life Experiences: Saliva, A Biospecimen for DNA Methylation Signatures. Current Genomics. 2018 Dec 1;19(8):676–98.

Khavari B, Cairns MJ. Epigenomic Dysregulation in Schizophrenia: In Search of Disease Etiology and Biomarkers. Cells [Internet]. 2020 Aug [cited 2025 May 31];9(8):1837. Available from: https://www.mdpi.com/2073-4409/9/8/1837

Karaglani M, Agorastos A, Panagopoulou M, Parlapani E, Athanasis P, Bitsios P, et al. A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning. Transl Psychiatry [Internet]. 2024 Jun 17 [cited 2025 May 31];14(1):1–12. Available from: https://www.nature.com/articles/s41398-024-02946-4

Lin D, Chen J, Perrone-Bizzozero N, Bustillo JR, Du Y, Calhoun VD, et al. Characterization of cross-tissue genetic-epigenetic effects and their patterns in schizophrenia. Genome Med [Internet]. 2018 Feb 26 [cited 2025 May 31];10(1):13. Available from: https://doi.org/10.1186/s13073-018-0519-4

Bahari-Javan S, Varbanov H, Halder R, Benito E, Kaurani L, Burkhardt S, et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proceedings of the National Academy of Sciences [Internet]. 2017 Jun 6 [cited 2025 May 31];114(23):E4686–94. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1613842114

Guan F, Ni T, Zhu W, Williams LK, Cui LB, Li M, et al. Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Mol Psychiatry [Internet]. 2022 Jan [cited 2025 May 31];27(1):113–26. Available from: https://www.nature.com/articles/s41380-021-01201-2

Modai S, Shomron N. Molecular Risk Factors for Schizophrenia. Trends in Molecular Medicine [Internet]. 2016 Mar 1 [cited 2025 May 31];22(3):242–53. Available from: https://www.cell.com/trends/molecular-medicine/abstract/S1471-4914(16)00017-4

Moran P, Stokes J, Marr J, Bock G, Desbonnet L, Waddington J, et al. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plasticity [Internet]. 2016 [cited 2025 May 27];2016(1):2173748. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2016/2173748

Shokrgozar A, Rahimi M, Shoraka S. Identification of key genes and pathways in schizophrenia: a bioinformatics analysis based on GWAS and GEO. Front Psychiatry [Internet]. 2025 Apr 7 [cited 2025 May 27];16. Available from: https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2025.1464676/full

Downloads

Published

2025-06-03

How to Cite

1.
Ch B, V L. Exploring the Role of CACNA1C, ZNF804A and SLC6A4 in Schizophrenia through Epigenomics and Bioinformatics. J Neonatal Surg [Internet]. 2025Jun.3 [cited 2025Sep.20];14(30S):396-413. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6978