Green Synthesis of Zinc Nanoparticles Using Phenolic Acids from Edible Mushrooms of Chhattisgarh Region: A Novel Approach

Authors

  • Parinita Tripathy
  • Sanyogita Shahi

DOI:

https://doi.org/10.63682/jns.v14i8.7219

Keywords:

Phenolic acid, Edible mushroom, Zinc nanoparticles, Green synthesis, Characterization

Abstract

This study presents a novel and environmentally sustainable approach for synthesizing zinc nanoparticles (ZnNPs) by leveraging phenolic acids extracted from edible mushrooms endemic to the Chhattisgarh region. We prepared methanolic extracts from selected mushroom species and quantified their total phenolic content using the Folin–Ciocalteu method, complemented by high-performance liquid chromatography (HPLC) for comprehensive phenolic acid profiling. The biosynthesis of ZnNPs was achieved through a controlled reaction between these mushroom extracts and zinc acetate dihydrate. The synthesized nanoparticles underwent rigorous characterization using a suite of analytical techniques, including UV-Visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and X-ray Diffraction1 (XRD) analysis. Our findings underscore the significant potential of native edible mushrooms as efficient and eco-friendly bio-factories for the production of ZnNPs, paving the way for their diverse applications in biomedical, agricultural, and environmental remediation sectors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abdelshafy, A. M., Belwal, T., Liang, Z., Wang, L., Li, D., Luo, Z., & Li, L. (2022). A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Critical Reviews in Food Science and Nutrition, 62(22), 6204-6224.

Aprotosoaie, A. C., Zavastin, D. E., Mihai, C. T., Voichita, G., Gherghel, D., Silion, M., ... & Miron, A. (2017). Antioxidant and antigenotoxic potential of Ramaria largentii Marr & DE Stuntz, a wild edible mushroom collected from Northeast Romania. Food and Chemical Toxicology, 108, 429-437.

Becerra-Herrera, M., Sánchez-Astudillo, M., Beltrán, R., & Sayago, A. (2014). Determination of phenolic compounds in olive oil: New method based on liquid–liquid micro extraction and ultra high performance liquid chromatography-triple–quadrupole mass spectrometry. LWT-Food Science and Technology, 57(1), 49-57.

Çayan, F., Deveci, E., Tel-Çayan, G., & Duru, M. E. (2020). Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. Journal of Food Measurement and Characterization, 14, 1690-1698.

Dr Sanyogita Shahi, Shilja (2024), Green Synthesis and Characterization of Gold Nanoparticles for Antibacterial and Antifungal Activities Using Leaf Extracts of Annona Muricata, Migration Letters, Volume: 20, No: S13, Pages: 161-168.

Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies, 10(2), 228-234.

Jharna Maiti, Amit Joshi, Sanyogita Shahi (2023), A Review on Edible Mushrooms and their Cancer Cure Properties, Journal of Advanced Zoology, Volume 44, Issue S-3, Pages: 1353-1358.

Junior, F. A. D. S. C., Petrarca, M. H., Meinhart, A. D., de Jesus Filho, M., & Godoy, H. T. (2019). Multivariate optimization of extraction and validation of phenolic acids in edible mushrooms by capillary electrophoresis. Food Research International, 126, 108685.

Kamal, A., Saba, M., Kamal, A., Batool, M., Asif, M., Al-Mohaimeed, A. M., ... & Ahmad, S. (2023). Bioinspired green synthesis of bimetallic iron and zinc oxide nanoparticles using mushroom extract and use against Aspergillus niger; the most devastating fungi of the green world. Catalysts, 13(2), 400.

Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., ... & Chung, I. M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), 7265-7270.

Meng, X., Liang, H., & Luo, L. (2016). Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate research, 424, 30-41.

Mohana, S., & Sumathi, S. (2020). Synthesis of zinc oxide using Agaricus bisporus and its in-vitro biological activities. Journal of Environmental Chemical Engineering, 8(5), 104192.

Nassar, A. M., Alanazi, A. H., Alzaid, M. M., & Moustafa, S. (2025). Harnessing wasted mushroom peel aqueous extract for mycogenic synthesis of zinc oxide nanoparticles for solar photocatalysis and antimicrobial applications. Biomass Conversion and Biorefinery, 1-16.

Nipornram, S., Tochampa, W., Rattanatraiwong, P., & Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food chemistry, 241, 338-345.

Nipornram, S., Tochampa, W., Rattanatraiwong, P., & Singanusong, R. (2018). Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food chemistry, 241, 338-345.

Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., ... & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food chemistry, 128(3), 674-678.

Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M. A., Martínez, J. A., ... & Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food chemistry, 128(3), 674-678.

PATLE, B. (2020). Exploring possibilities of Button mushroom cultivation in Chhattisgarh (Doctoral dissertation, Indira Gandhi Krishi Vishwavidyalaya, Raipur (CG)).

Ribeiro, B., Rangel, J., Valentão, P., Baptista, P., Seabra, R. M., & Andrade, P. B. (2006). Contents of carboxylic acids and two phenolics and antioxidant activity of dried Portuguese wild edible mushrooms. Journal of agricultural and food chemistry, 54(22), 8530-8537.

Ribeiro, B., Valentão, P., Baptista, P., Seabra, R. M., & Andrade, P. B. (2007). Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology, 45(10), 1805-1813.

Roncero-Ramos, I., & Delgado-Andrade, C. (2017). The beneficial role of edible mushrooms in human health. Current Opinion in Food Science, 14, 122-128.

Sami, R., Elhakem, A., Alharbi, M., Benajiba, N., Almatrafi, M., Abdelazez, A., & Helal, M. (2021). Evaluation of antioxidant activities, oxidation enzymes, and quality of nano-coated button mushrooms (Agaricus Bisporus) during storage. Coatings, 11(2), 149.

Shahi S., Singh S. K. (2024), Mushroom-Based Bioactive Compounds: Pioneering Next-Generation Biosensors, African Journal of Biological Sciences, Volume 6, Issue 11, Page: 1843-1850.

Shahi S., Singh S. K. (2023), Biosynthesis Of Nanoparticles Using Milk Oligosaccharides, Journal of Advanced Zoology, Volume 44, Issue 5, Pages: 805-811.

Siu, K. C., Xu, L., Chen, X., & Wu, J. Y. (2016). Molecular properties and antioxidant activities of polysaccharides isolated from alkaline extract of wild Armillaria ostoyae mushrooms. Carbohydrate polymers, 137, 739-746.

Taofiq, O., Calhelha, R. C., Heleno, S., Barros, L., Martins, A., Santos-Buelga, C., ... & Ferreira, I. C. (2015). The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International, 76, 821-827.

Tijani, N. A., Hokello, J., Awojobi, K. O., Marnadu, R., Shkir, M., Ahmad, Z., ... & Adebayo, I. A. (2024). Recent advances in Mushroom-mediated nanoparticles: A critical review of mushroom biology, nanoparticles synthesis, types, characteristics and applications. Journal of Drug Delivery Science and Technology, 105695.

Vamanu, E., & Pelinescu, D. (2017). Effects of mushroom consumption on the microbiota of different target groups–Impact of polyphenolic composition and mitigation on the microbiome fingerprint. LWT-Food Science and Technology, 85, 262-268.

Vamanu, E., & Pelinescu, D. (2017). Effects of mushroom consumption on the microbiota of different target groups–Impact of polyphenolic composition and mitigation on the microbiome fingerprint. LWT-Food Science and Technology, 85, 262-268.

Wang, L. N., Gao, W., Wang, Q. Y., Qu, J. B., Zhang, J. X., & Huang, C. Y. (2019). Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers. Journal of Integrative Agriculture, 18(3), 580-589.

Yahia, E. M., Gutiérrez-Orozco, F., & Moreno-Pérez, M. A. (2017). Identification of phenolic compounds by liquid chromatography-mass spectrometry in seventeen species of wild mushrooms in Central Mexico and determination of their antioxidant activity and bioactive compounds. Food Chemistry, 226, 14-22.

Yaltirak, T., Aslim, B., Ozturk, S., & Alli, H. (2009). Antimicrobial and antioxidant activities of Russula delica Fr. Food and Chemical Toxicology, 47(8), 2052-2056.

Downloads

Published

2025-06-09

How to Cite

1.
Tripathy P, Shahi S. Green Synthesis of Zinc Nanoparticles Using Phenolic Acids from Edible Mushrooms of Chhattisgarh Region: A Novel Approach. J Neonatal Surg [Internet]. 2025Jun.9 [cited 2025Sep.17];14(8):333-8. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/7219