Enhanced (CuO/ZnO) Nanocomposites Synthesized via Thermal Evaporation for High-Performance Photodetector Applications

Authors

  • Ahmed A. Jabber
  • Ali R. Abdulridha

Keywords:

Copper oxide, Nanocomposites, Photodetector, Thermal evaporation, Thin films, Zinc oxide

Abstract

In this article, thin films of copper oxide (CuO) doped with zinc oxide (ZnO) were produced using thermal evaporation at 1×10-7 bar pressure and 0.5 nm/s deposition rate. Deposition on glass substrates yielded a 50±0.2 nm film thickness at ambient temperature. After annealing at 400 0C for two hours, XRD examination revealed a monoclinic wurtzite structure of CuO. AFM investigation found a 54.46% increase in surface roughness, a 52.5% increase in RMS, and a 27.5% average particle size with increasing ZnO concentration. FE-SEM and EDX confirmed the uniform distribution of Cu, Zn, O, and CuO/ZnO nanocomposites. Higher ZnO improved absorption, refractive index, and extinction coefficient; energy band gap fell from 3.601 to 3.388 eV. Electrical studies showed enhanced DC conductivity, resistance, and activation energy with higher ZnO concentration and temperature. I–V tests showed greater photocurrent, responsiveness, and sensitivity, making these films promising for optoelectronic and photodetector applications.

Downloads

Download data is not yet available.

References

S. Mostafa Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements, South African J. Chem. 70 (2017) 44–48. https://doi.org/10.17159/0379-4350/2017/v70a7.

P.P. Magar, V.S. Kadam, S.F. Mulla, A. V. Shaikh, H.M. Pathan, Copper and iron doped zinc oxide: chemical synthesis, characterization and their properties, J. Mater. Sci. Mater. Electron. 27 (2016) 12287–12290. https://doi.org/10.1007/s10854-016-4835-4.

J. Teizer, M. Venugopal, W. Teizer, J. Felkl, Nanotechnology and Its Impact on Construction: Bridging the Gap between Researchers and Industry Professionals, J. Constr. Eng. Manag. 138 (2012) 594–604. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000467.

M.C. Roco, R.S. Williams, P. Alivisatos, Nanotechnology Research Directions: IWGN Workshop Report, Springer Netherlands, Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9576-6.

K.P. Chong, Nano Science and Engineering in Mechanics and Materials, in: Materials (Basel)., ASMEDC, 2003: pp. 273–281. https://doi.org/10.1115/IMECE2003-43239.

M. Patel, S. Mishra, R. Verma, D. Shikha, Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique, Discov. Mater. 2 (2022). https://doi.org/10.1007/s43939-022-00022-6.

N.A. Ibrahim, Nanomaterials for Antibacterial Textiles, in: Nanotechnol. Diagnosis, Treat. Prophyl. Infect. Dis., Elsevier, 2015: pp. 191–216. https://doi.org/10.1016/B978-0-12-801317-5.00012-8.

Z. Yang, H. Peng, W. Wang, T. Liu, Crystallization behavior of poly(ε‐caprolactone)/layered double hydroxide nanocomposites, J. Appl. Polym. Sci. 116 (2010) 2658–2667. https://doi.org/10.1002/app.31787.

S. Murthy, P. Effiong, C.C. Fei, Metal oxide nanoparticles in biomedical applications, in: Met. Oxide Powder Technol., Elsevier, 2020: pp. 233–251. https://doi.org/10.1016/B978-0-12-817505-7.00011-7.

S. Ibrahim, Y.M. Hamdy, H. Darwish, A.A. Ali, Effect of CuO doping on structural features, optical absorption and photoluminescence behavior of ZnO-based glasses, J. Mater. Sci. Mater. Electron. 34 (2023) 1–15. https://doi.org/10.1007/s10854-023-10270-8.

T. Jintakosol, P. Singjai, Effect of annealing treatment on luminescence property of MgO nanowires, Curr. Appl. Phys. 9 (2009) 1288–1292. https://doi.org/10.1016/j.cap.2009.02.014.

K.K. Ostrikov, U. Cvelbar, A.B. Murphy, Plasma nanoscience: setting directions, tackling grand challenges, J. Phys. D. Appl. Phys. 44 (2011) 174001. https://doi.org/10.1088/0022-3727/44/17/174001.

M.K. Mohammed, T.N. Khudhair, K.S. Sharba, A. Hashim, Q.M. Hadi, M.H. Meteab, Tuning the Morphological and Optical Characteristics of SnO2/ZrO2 Nanomaterials Doped PEO for Promising Optoelectronics Applications, Rev. Des Compos. Des Matériaux Avancés 34 (2024) 495–503. https://doi.org/10.18280/rcma.340411.

S. Ilican, M. Caglar, Y. Caglar, Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films, Appl. Surf. Sci. 256 (2010) 7204–7210. https://doi.org/10.1016/j.apsusc.2010.05.052.

D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng. B 80 (2001) 383–387. https://doi.org/10.1016/S0921-5107(00)00604-8.

J.Y. Park, D.E. Song, S.S. Kim, An approach to fabricating chemical sensors based on ZnO nanorod arrays, Nanotechnology 19 (2008) 105503. https://doi.org/10.1088/0957-4484/19/10/105503.

M.H. Asif, A. Fulati, O. Nur, M. Willander, C. Brännmark, P. Strålfors, S.I. Börjesson, F. Elinder, Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor, Appl. Phys. Lett. 95 (2009). https://doi.org/10.1063/1.3176441.

F. Hussain, M. Meteab, Nuclear reaction analyses for green chemistry: Evaluating environmental safety in charged particle interactions, E3S Web Conf. 614 (2025) 04025. https://doi.org/10.1051/e3sconf/202561404025.

Ü. Özgür, D. Hofstetter, H. Morkoç, ZnO Devices and Applications: A Review of Current Status and Future Prospects, Proc. IEEE 98 (2010) 1255–1268. https://doi.org/10.1109/JPROC.2010.2044550.

A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron. 34 (2010) 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001.

M.H. Meteab, A. Hashim, B.H. Rabee, Synthesis and Structural Properties of (PS–PC/Co2O3–SiC) Nanocomposites for Antibacterial Applications, Nanosistemi, Nanomater. Nanotehnologii 21 (2023) 0451–0460. https://doi.org/10.15407/nnn.21.02.451.

J. Lillo-Ramiro, J.M. Guerrero-Villalba, M. de L. Mota-González, F.S.A.- Tostado, G. Gutiérrez-Heredia, I. Mejía-Silva, A.C.- Castillo, Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications, Optik (Stuttg). 229 (2021) 166238. https://doi.org/10.1016/j.ijleo.2020.166238.

R. Nayak, F.A. Ali, D.K. Mishra, D. Ray, V.K. Aswal, S.K. Sahoo, B. Nanda, Fabrication of CuO nanoparticle: An efficient catalyst utilized for sensing and degradation of phenol, J. Mater. Res. Technol. 9 (2020) 11045–11059. https://doi.org/10.1016/j.jmrt.2020.07.100.

P. V. Raghavendra, J.S. Bhat, N.G. Deshpande, Visible light sensitive cupric oxide metal-semiconductor-metal photodetectors, Superlattices Microstruct. 113 (2018) 754–760. https://doi.org/10.1016/j.spmi.2017.12.014.

Y.-G. Lin, Y.-K. Hsu, S.-Y. Chen, L.-C. Chen, K.-H. Chen, Microwave-activated CuO nanotip/ZnO nanorod nanoarchitectures for efficient hydrogen production, J. Mater. Chem. 21 (2011) 324–326. https://doi.org/10.1039/C0JM03022H.

J.X. Wang, X.W. Sun, Y. Yang, K.K.A. Kyaw, X.Y. Huang, J.Z. Yin, J. Wei, H.V. Demir, Free-standing ZnO–CuO composite nanowire array films and their gas sensing properties, Nanotechnology 22 (2011) 325704. https://doi.org/10.1088/0957-4484/22/32/325704.

X. Zhao, P. Wang, B. Li, CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application, Chem. Commun. 46 (2010) 6768. https://doi.org/10.1039/c0cc01610a.

X. Wang, G. Xi, S. Xiong, Y. Liu, B. Xi, W. Yu, Y. Qian, Solution-Phase Synthesis of Single-Crystal CuO Nanoribbons and Nanorings, Cryst. Growth Des. 7 (2007) 930–934. https://doi.org/10.1021/cg060798j.

Z.L. Wang, The new field of nanopiezotronics, Mater. Today 10 (2007) 20–28. https://doi.org/10.1016/S1369-7021(07)70076-7.

Z. Liu, H. Bai, S. Xu, D.D. Sun, Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation, Int. J. Hydrogen Energy 36 (2011) 13473–13480. https://doi.org/10.1016/j.ijhydene.2011.07.137.

Q. Simon, D. Barreca, A. Gasparotto, CuO/ZnO Nanocomposites Investigated by X-ray Photoelectron and X-ray Excited Auger Electron Spectroscopies, Surf. Sci. Spectra 17 (2010) 93–101. https://doi.org/10.1116/11.20111002.

M. Jafari, H. Eshghi, High self-powered UV–Visible photoresponse in ZnO/CuO heterostructure photodetectors, the influence of ZnO window layer thickness, Opt. Mater. (Amst). 142 (2023) 113975. https://doi.org/10.1016/j.optmat.2023.113975.

N. Alwadai, S. Mitra, M.N. Hedhili, H. Alamoudi, B. Xin, N. Alaal, I.S. Roqan, Enhanced-Performance Self-Powered Solar-Blind UV-C Photodetector Based on n-ZnO Quantum Dots Functionalized by p-CuO Micro-pyramids, ACS Appl. Mater. Interfaces 13 (2021) 33335–33344. https://doi.org/10.1021/acsami.1c03424.

S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, A CuO nanowire infrared photodetector, Sensors Actuators A Phys. 171 (2011) 207–211. https://doi.org/10.1016/j.sna.2011.09.011.

F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, Phys. Rev. 92 (1953) 1324. https://doi.org/10.1103/PhysRev.92.1324.

J. Tauc, Optical Properties of Amorphous Semiconductors BT - Amorphous and Liquid Semiconductors, in: J. Tauc (Ed.), Springer US, Boston, MA, 1974: pp. 159–220. https://doi.org/10.1007/978-1-4615-8705-7_4.

S. Arrhenius, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Zeitschrift Für Phys. Chemie 4 (1889) 226–248.

A. Costas, C. Florica, N. Preda, A. Kuncser, I. Enculescu, Photodetecting properties of single CuO–ZnO core–shell nanowires with p–n radial heterojunction, Sci. Rep. 10 (2020) 1–12. https://doi.org/10.1038/s41598-020-74963-4.

S. Noothongkaew, O. Thumthan, K.S. An, UV-Photodetectors based on CuO/ZnO nanocomposites, Mater. Lett. 233 (2018) 318–323. https://doi.org/10.1016/j.matlet.2018.09.024.

M.C. Morris, Standard X-ray diffraction powder patterns: Section 16--data for 86 substances, Department of Commerce, National Bureau of Standards, 1979.

N. Al Armouzi, M. Manoua, Y. Ghanam, H.S. Hilal, A. Liba, M. Mabrouki, Enhancement of p-CuO/n-ZnO Heterojunction Photovoltaic Characteristics by Preparation Route and Sn Doping, J. Electron. Mater. 53 (2024) 3398–3412. https://doi.org/10.1007/s11664-024-11084-y.

A.H.O. Alkhayatt, A. Abed Abdul Wahab H, A. Ali Abdulhussein Hameed, Optical band gap Modification and Photodetector Properties of Au NPs Doped CuZnS Thin Films, J. Kufa-Physics 10 (2018) 95–107. https://doi.org/10.31257/2018/JKP/100115.

R.O. Yathisha, Y. Arthoba Nayaka, P. Manjunatha, H.T. Purushothama, M.M. Vinay, K. V. Basavarajappa, Study on the effect of Zn 2+ doping on optical and electrical properties of CuO nanoparticles, Phys. E Low-Dimensional Syst. Nanostructures 108 (2019) 257–268. https://doi.org/10.1016/j.physe.2018.12.021.

S.T. Abdulredha, N.A. Abdulrahman, Cu-ZnO nanostructures synthesis and characterization, Iraqi J. Sci. 62 (2021) 708–717. https://doi.org/10.24996/ijs.2021.62.3.1.

R. Grazziotin-Soares, M.H. Nekoofar, T.E. Davies, A. Bafail, E. Alhaddar, R. Hübler, A.L.S. Busato, P.M.H. Dummer, Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties, Int. Endod. J. 47 (2014) 520–533. https://doi.org/10.1111/IEJ.12181.

K. Mubeen, A. Irshad, A. Safeen, U. Aziz, K. Safeen, T. Ghani, K. Khan, Z. Ali, I. ul Haq, A. Shah, Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity, J. Saudi Chem. Soc. 27 (2023) 101639. https://doi.org/https://doi.org/10.1016/j.jscs.2023.101639.

F.P. Koffyberg, F.A. Benko, A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO, J. Appl. Phys. 53 (1982) 1173–1177. https://doi.org/10.1063/1.330567.

A. Razzaq Abdul Ridha, N.A. Al-Isawi, Studying the effect of annealing temperatures on the optical properties of CdS:1% Cu nanoparticles thin films prepared by thermal evaporation technique, J. Phys. Conf. Ser. 1234 (2019) 012029. https://doi.org/10.1088/1742-6596/1234/1/012029.

F. Teimoori, K. Khojier, N.Z. Dehnavi, On the Dependence of H2 Gas Sensitivity of ZnO thin Films on Film Thickness, Procedia Mater. Sci. 11 (2015) 474–479. https://doi.org/10.1016/j.mspro.2015.11.061.

T.T. Liu, M. hua Wang, H.P. Zhang, Synthesis and Characterization of ZnO/Bi2O3 Core/Shell Nanoparticles by the Sol–Gel Method, J. Electron. Mater. 45 (2016) 4412–4417. https://doi.org/10.1007/S11664-016-4568-4.

S. Indris, P. Heitjans, M. Ulrich, A. Bunde, AC and DC Conductivity in Nano- and Microcrystalline Li2O : B2O3 Composites: Experimental Results and Theoretical Models, Zeitschrift Fur Phys. Chemie 219 (2005) 89–103. https://doi.org/10.1524/zpch.219.1.89.55015.

A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors, J. Mater. Sci. Mater. Electron. 29 (2018) 11598–11604. https://doi.org/10.1007/s10854-018-9257-z.

H.S. Suhail, A.R. Abdulridha, Investigation of the Morphological, Optical, and D.C Electrical Characteristics of Synthesized (Bi2O3/ZnO) Nanocomposites, as Well as Their Potential Use in Hydrogen Sulfide Gas Sensor, Trans. Electr. Electron. Mater. 24 (2023) 205–216. https://doi.org/10.1007/s42341-023-00436-w.

A. Sawalha, M. Abu-Abdeen, A. Sedky, Electrical conductivity study in pure and doped ZnO ceramic system, Phys. B Condens. Matter 404 (2009) 1316–1320. https://doi.org/10.1016/j.physb.2008.12.017.

A. Sawalha, M. Abu-Abdeen, A. Sedky, Preparation and Characterization of Thin Films Bismuth(III) Oxide/Zinc Oxide Nanostructures Prepared by Thermal Evaporation Technique as Gas Sensor Applications, Phys. B Condens. Matter 404 (2009) 1316–1320. https://doi.org/10.1007/s42341-023-00490-4.

E. Aslan, Improving the device performance of CuO-based self-powered photodetectors by cobalt doping, J. Phys. Chem. Solids 191 (2024) 112032. https://doi.org/10.1016/j.jpcs.2024.112032.

Downloads

Published

2025-06-10

How to Cite

1.
A. Jabber A, R. Abdulridha A. Enhanced (CuO/ZnO) Nanocomposites Synthesized via Thermal Evaporation for High-Performance Photodetector Applications. J Neonatal Surg [Internet]. 2025Jun.10 [cited 2025Oct.10];14(8):346-63. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/7262