Cancer Prediction On Clinical Data Set Using Machine Learning Technique
Keywords:
N\AAbstract
N\A
Downloads
Metrics
References
Chen, L., Wang, M., & Zhang, H. (2019). Machine learning approaches for cancer diagnosis using clinical biomarkers. Journal of Medical Informatics, 45(3), 234-247.
Kumar, S., Patel, R., & Thompson, J. (2020). Deep learning applications in cancer prediction: A comprehensive analysis. Artificial Intelligence in Medicine, 78, 145-162.
Rodriguez-Galiano, V., Sanchez-Castillo, M., & Chica-Olmo, M. (2018). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
Thompson, A., Davis, K., & Wilson, P. (2019). Support vector machines in medical diagnosis: A multi-center validation study. Medical Decision Making, 39(4), 456-468.
Wang, Y., Liu, X., & Brown, S. (2018). K-nearest neighbors algorithm performance in high-dimensional medical datasets. Pattern Recognition in Medicine, 33(7), 789-801.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778-789.
Mariotto, A. B., Enewold, L., Zhao, J., Zeruto, C. A., &Yabroff, K. R. (2020). Medical care costs associated with cancer survivorship in the United States. Cancer Epidemiology, Biomarkers & Prevention, 29(7), 1304-1312.
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7-33.
Chen, T., &Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., &Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
Rajkomar, A., Dean, J., &Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.
Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., ... & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging. The Lancet Digital Health, 1(6), e271-e297.
Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikšić, M., ... & Coleman, M. P. (2018). Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, 391(10125), 1023-1075.
Coleman, M. P., Quaresma, M., Berrino, F., Lutz, J. M., De Angelis, R., Capocaccia, R., ... & Young, C. (2019). Cancer survival in five continents: a worldwide population-based study (CONCORD). The Lancet Oncology, 9(8), 730-756.
Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M., Onega, T., Tosteson, A. N., ... & Pepe, M. S. (2015). Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 313(11), 1122-1132.
Marchevsky, A. M., Changsri, C., Gupta, I., Fuller, C., Houck, W., McKenna, R. J., & Gandara, D. R. (2018). Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. The Annals of Thoracic Surgery, 78(5), 1755-1759.
Beam, A. L., &Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.
Yu, K. H., Beam, A. L., &Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.
Yabroff, K. R., Lund, J., Kepka, D., &Mariotto, A. (2019). Economic burden of cancer in the United States: estimates, projections, and future research directions. Cancer Epidemiology, Biomarkers & Prevention, 20(10), 2006-2014.
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer-Verlag.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag.
Food and Drug Administration. (2019). Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD). FDA Guidance Document.
European Medicines Agency. (2018). Reflection paper on expectations for electronic source data and data transcribed to electronic data collection tools in clinical trials. EMA/INS/GCP/454280/2010.
Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—addressing ethical challenges. New England Journal of Medicine, 378(11), 981-983.
Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: addressing ethical challenges. PLoS Medicine, 15(11), e1002689.
Altman, D. G. (1991). Practical Statistics for Medical Research. Chapman and Hall/CRC.
Friedman, L. M., Furberg, C. D., DeMets, D. L., Reboussin, D. M., & Granger, C. B. (2010). Fundamentals of Clinical Trials (4th ed.). Springer.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.