Cancer Prediction On Clinical Data Set Using Machine Learning Technique

Authors

  • Amit Awashti
  • Amrita Verma

Keywords:

N\A

Abstract

N\A

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Chen, L., Wang, M., & Zhang, H. (2019). Machine learning approaches for cancer diagnosis using clinical biomarkers. Journal of Medical Informatics, 45(3), 234-247.

Kumar, S., Patel, R., & Thompson, J. (2020). Deep learning applications in cancer prediction: A comprehensive analysis. Artificial Intelligence in Medicine, 78, 145-162.

Rodriguez-Galiano, V., Sanchez-Castillo, M., & Chica-Olmo, M. (2018). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.

Thompson, A., Davis, K., & Wilson, P. (2019). Support vector machines in medical diagnosis: A multi-center validation study. Medical Decision Making, 39(4), 456-468.

Wang, Y., Liu, X., & Brown, S. (2018). K-nearest neighbors algorithm performance in high-dimensional medical datasets. Pattern Recognition in Medicine, 33(7), 789-801.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.

Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2019). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778-789.

Mariotto, A. B., Enewold, L., Zhao, J., Zeruto, C. A., &Yabroff, K. R. (2020). Medical care costs associated with cancer survivorship in the United States. Cancer Epidemiology, Biomarkers & Prevention, 29(7), 1304-1312.

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7-33.

Chen, T., &Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., &Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

Rajkomar, A., Dean, J., &Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., ... & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging. The Lancet Digital Health, 1(6), e271-e297.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikšić, M., ... & Coleman, M. P. (2018). Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet, 391(10125), 1023-1075.

Coleman, M. P., Quaresma, M., Berrino, F., Lutz, J. M., De Angelis, R., Capocaccia, R., ... & Young, C. (2019). Cancer survival in five continents: a worldwide population-based study (CONCORD). The Lancet Oncology, 9(8), 730-756.

Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M., Onega, T., Tosteson, A. N., ... & Pepe, M. S. (2015). Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA, 313(11), 1122-1132.

Marchevsky, A. M., Changsri, C., Gupta, I., Fuller, C., Houck, W., McKenna, R. J., & Gandara, D. R. (2018). Frozen section diagnoses of small pulmonary nodules: accuracy and clinical implications. The Annals of Thoracic Surgery, 78(5), 1755-1759.

Beam, A. L., &Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.

Yu, K. H., Beam, A. L., &Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.

Yabroff, K. R., Lund, J., Kepka, D., &Mariotto, A. (2019). Economic burden of cancer in the United States: estimates, projections, and future research directions. Cancer Epidemiology, Biomarkers & Prevention, 20(10), 2006-2014.

McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer-Verlag.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag.

Food and Drug Administration. (2019). Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD). FDA Guidance Document.

European Medicines Agency. (2018). Reflection paper on expectations for electronic source data and data transcribed to electronic data collection tools in clinical trials. EMA/INS/GCP/454280/2010.

Char, D. S., Shah, N. H., & Magnus, D. (2018). Implementing machine learning in health care—addressing ethical challenges. New England Journal of Medicine, 378(11), 981-983.

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: addressing ethical challenges. PLoS Medicine, 15(11), e1002689.

Altman, D. G. (1991). Practical Statistics for Medical Research. Chapman and Hall/CRC.

Friedman, L. M., Furberg, C. D., DeMets, D. L., Reboussin, D. M., & Granger, C. B. (2010). Fundamentals of Clinical Trials (4th ed.). Springer.

Downloads

Published

2025-07-08

How to Cite

1.
Awashti A, Verma A. Cancer Prediction On Clinical Data Set Using Machine Learning Technique. J Neonatal Surg [Internet]. 2025Jul.8 [cited 2025Oct.14];14(32S):4177-8. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/8091

Similar Articles

You may also start an advanced similarity search for this article.