Challenges And Methods in Laboratory Testing of Biofilm-Forming Pathogens in Chronic Infections

Authors

  • Muhammad Naeem Khan
  • Abeeha Usmani
  • Maryam AbuBaker Hamad
  • Amina Farrukh Alavi
  • Girish Suresh Shelke

Keywords:

Bacterial Biofilms, Chronic Infections, Healthcare Satisfaction, Physical Activity, Regression Analysis, Lifestyle Factors

Abstract

Background: Bacterial biofilms play a significant role in chronic infections, as they contribute to the persistence of pathogenic bacteria by protecting them from both host immune responses and antimicrobial treatments. This study aims to examine the relationship between bacterial biofilm formation and healthcare satisfaction among patients with chronic illnesses, with a focus on the influence of demographic and lifestyle factors.

Objectives: The primary objectives of this research are to investigate the prevalence of bacterial biofilms in chronic infections, analyze the impact of patient demographics (age, years of illness) on healthcare satisfaction, and evaluate the role of lifestyle factors, particularly physical activity, in improving healthcare outcomes.

Methods: A cross-sectional design was employed, where 250 participants diagnosed with chronic illnesses were surveyed to collect data on demographics, healthcare satisfaction, physical activity, and overall lifestyle. Laboratory tests were conducted to measure bacterial biofilm formation, and several statistical tests, including normality tests (Shapiro-Wilk), correlation analysis, Cronbach’s alpha for reliability, and regression analysis, were performed to analyze the data.

Results: The Shapiro-Wilk test indicated that none of the variables followed a normal distribution. Cronbach's alpha showed a moderate internal consistency among healthcare-related variables. Correlation analysis revealed strong negative correlations between healthcare satisfaction and both age and years of illness, while physical activity was positively correlated with healthcare satisfaction. The regression analysis confirmed that physical activity and lifestyle factors significantly predict healthcare satisfaction.

Conclusion: The study demonstrates that both demographic factors (age, years of illness) and lifestyle interventions (physical activity) significantly impact healthcare satisfaction in chronic illness patients. Physical activity emerged as a crucial factor in enhancing patient satisfaction. Future research should explore the role of other lifestyle interventions and refine the tools used to measure healthcare satisfaction in chronic disease management.

Downloads

Download data is not yet available.

References

Alhede, M., Alhede, M., Qvortrup, K., Kragh, K. N., Jensen, P. Ø., Stewart, P. S., & Bjarnsholt, T. (2020). The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathogens and Disease, 78(2), ftaa018.

Amod, A., Anand, A. A., Sahoo, A. K., & Samanta, S. K. (2025). Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiologica, 1-22.

Barki, K. G., Das, A., Dixith, S., Ghatak, P. D., Mathew-Steiner, S., Schwab, E., Khanna, S., Wozniak, D. J., Roy, S., & Sen, C. K. (2019). Electric field-based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing. Annals of Surgery, 269(4), 756-766.

Byeon, C. H., Kinney, T., Saricayir, H., Holst Hansen, K., Scott, F. J., Srinivasa, S., Wells, M. K., Mentink‐Vigier, F., Kim, W., & Akbey, Ü. (2025). Ultrasensitive Characterization of Native Bacterial Biofilms via Dynamic Nuclear Polarization‐Enhanced Solid‐State NMR. Angewandte Chemie International Edition, 64(12), e202418146.

Cámara, M., Green, W., MacPhee, C. E., Rakowska, P. D., Raval, R., Richardson, M. C., Slater-Jefferies, J., Steventon, K., & Webb, J. S. (2022). The economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. npj Biofilms and Microbiomes, 8(1), 42.

Cao, B., Lyu, X., Wang, C., Lu, S., Xing, D., & Hu, X. (2020). Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials, 262, 120341.

Cao, J., Qiu, S., Wang, M., Xiao, Z., Liu, J., Du, T., & Du, X. (2025). Smart response CO hydrogel “battling” bacterial biofilms and inflammation associated with wounds. Journal of Hazardous Materials, 490, 137662.

Chen, M., Wei, J., Xie, S., Tao, X., Zhang, Z., Ran, P., & Li, X. (2019). Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale, 11(3), 1410-1422.

Cheong, J. A., Johnson, C. J., Wan, H., Liu, A., Kernien, J. F., Gibson, A. L., Nett, J. E., & Kalan, L. R. (2021). Priority effects dictate community structure and alter the virulence of fungal-bacterial biofilms. The ISME Journal, 15(7), 2012-2027.

Ciofu, O., Moser, C., Jensen, P. Ø., & Høiby, N. (2022). Tolerance and resistance of microbial biofilms. Nature Reviews Microbiology, 20(10), 621-635.

Di Domenico, E. G., Rimoldi, S. G., Cavallo, I., D’Agosto, G., Trento, E., Cagnoni, G., Palazzin, A., Pagani, C., Romeri, F., & De Vecchi, E. (2019). Microbial biofilm correlates with an increased antibiotic tolerance and poor therapeutic outcome in infective endocarditis. Bmc Microbiology, 19, 1-10.

Diban, F., Di Lodovico, S., Di Fermo, P., D’Ercole, S., D’Arcangelo, S., Di Giulio, M., & Cellini, L. (2023). Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. International Journal of Molecular Sciences, 24(2), 1004.

Ding, M., Zhao, W., Song, L.-J., & Luan, S.-F. (2022). Stimuli-responsive nanocarriers for bacterial biofilm treatment. Rare Metals, 41(2), 482-498.

Du, T., Xiao, Z., Zhang, G., Wei, L., Cao, J., Zhang, Z., Li, X., Song, Z., Wang, W., & Liu, J. (2023). An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomaterialia, 161, 112-133.

Fu, X., Du, S., Liang, J., Wang, B., Liu, Y., Yu, Y., Xu, L., Xue, P., Wang, B., & Kang, Y. (2025). Nanoscale coordination polymer-coated microneedle patches against bacterial biofilm infection via hypoxia-enhanced copper ion interference therapy. Chemical Engineering Journal, 504, 158789.

Gao, Q., Yang, H., Sheiber, J., Halicki, P. C. B., Liu, K., Blanco, D., Milhous, S., Jin, S., Rohde, K. H., & Fleeman, R. M. (2025). Identification of 6, 8-trifluoromethyl halogenated phenazine as a potent bacterial biofilm-eradicating agent. Organic & Biomolecular Chemistry.

Gao, Y., Chen, X., Zou, Z., Qi, D., Geng, Y., Wang, Z., Zhang, Z., He, C., & Yu, J. Tissue‐Adhesive and Antibacterial Hydrogel Promotes MDR Bacteria‐Infected Diabetic Wound Healing via Disrupting Bacterial Biofilm, Scavenging ROS, and Promoting Angiogenesis. Advanced Healthcare Materials, 2404889.

Ge, M., Zhu, W., Mei, J., Hu, T., Yang, C., Lin, H., & Shi, J. (2025). Piezoelectric‐Enhanced Nanocatalysts Trigger Neutrophil N1 Polarization against Bacterial Biofilm by Disrupting Redox Homeostasis. Advanced Materials, 37(6), 2409633.

Haidari, H., Bright, R., Garg, S., Vasilev, K., Cowin, A. J., & Kopecki, Z. (2021). Eradication of mature bacterial biofilms with concurrent improvement in chronic wound healing using silver nanoparticle hydrogel treatment. Biomedicines, 9(9), 1182.

Jakobsen, T. H., Rumbaugh, K., Coenye, T., & Bjarnsholt, T. (2025). Microbial biofilms and chronic wounds: Facts and speculation. Journal of Wound Management, 26(1), 54-56.

Kolpen, M., Kragh, K. N., Enciso, J. B., Faurholt-Jepsen, D., Lindegaard, B., Egelund, G. B., Jensen, A. V., Ravn, P., Mathiesen, I. H. M., & Gheorge, A. G. (2022). Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax, 77(10), 1015-1022.

Kvich, L., Burmølle, M., Bjarnsholt, T., & Lichtenberg, M. (2020). Do mixed-species biofilms dominate in chronic infections?–need for in situ visualization of bacterial organization. Frontiers in cellular and infection microbiology, 10, 396.

Li, P., Yin, R., Cheng, J., & Lin, J. (2023). Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. International Journal of Molecular Sciences, 24(14), 11680.

Li, X., Huang, W., Zheng, X., Chang, S., Liu, C., Cheng, Q., & Zhu, S. (2019). Synergistic in vitro effects of indocyanine green and ethylenediamine tetraacetate-mediated antimicrobial photodynamic therapy combined with antibiotics for resistant bacterial biofilms in diabetic foot infection. Photodiagnosis and Photodynamic Therapy, 25, 300-308.

Liu, M., Huang, L., Xu, X., Wei, X., Yang, X., Li, X., Wang, B., Xu, Y., Li, L., & Yang, Z. (2022). Copper-doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS nano, 16(6), 9479-9497.

Lu, Z., Fan, W., Ye, Y., Huang, Y., Zhou, X., Zhang, Y., Cui, W., Ji, J., Yao, K., & Han, H. (2025). Drug in Drug: Quorum Sensing Inhibitor in Star-Shaped Antibacterial Polypeptides for Inhibiting and Eradicating Corneal Bacterial Biofilms. ACS Nano.

Lv, X., Wang, L., Mei, A., Xu, Y., Ruan, X., Wang, W., Shao, J., Yang, D., & Dong, X. (2023). Recent nanotechnologies to overcome the bacterial biofilm matrix barriers. Small, 19(6), 2206220.

Mgomi, F. C., Yang, Y.-r., Cheng, G., & Yang, Z.-q. (2023). Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm, 5, 100118.

Mirzaei, R., Mohammadzadeh, R., Alikhani, M. Y., Shokri Moghadam, M., Karampoor, S., Kazemi, S., Barfipoursalar, A., & Yousefimashouf, R. (2020). The biofilm‐associated bacterial infections are unrelated to indwelling devices. IUBMB life, 72(7), 1271-1285.

Mosaddad, S. A., Tahmasebi, E., Yazdanian, A., Rezvani, M. B., Seifalian, A., Yazdanian, M., & Tebyanian, H. (2019). Oral microbial biofilms: an update. European Journal of Clinical Microbiology & Infectious Diseases, 38, 2005-2019.

Pattanayak, D. S., Pal, D., Yadav, V., & Upadhyay, A. (2025). Salmonella Infections with Biofilms in Developed and Developing Nations.

Razdan, K., Garcia-Lara, J., Sinha, V., & Singh, K. K. (2022). Pharmaceutical strategies for the treatment of bacterial biofilms in chronic wounds. Drug Discovery Today, 27(8), 2137-2150.

Roche, E. D., Woodmansey, E. J., Yang, Q., Gibson, D. J., Zhang, H., & Schultz, G. S. (2019). Cadexomer iodine effectively reduces bacterial biofilm in porcine wounds ex vivo and in vivo. International wound journal, 16(3), 674-683.

Silva, N., Marques, L., & Röder, D. (2021). Diagnosis of biofilm infections: Current methods used, challenges and perspectives for the future. Journal of Applied Microbiology, 131(5), 2148-2160.

Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial biofilm inhibition: A focused review on recent therapeutic strategies for combating the biofilm mediated infections. Frontiers in Microbiology, 12, 676458.

Tang, Y., Chen, Y., Qi, Y.-D., Yan, H.-Y., Peng, W.-A., Wang, Y.-Q., Huang, Q.-X., Liu, X.-H., Ye, J.-J., & Yu, Y. (2025). Engineered Bdellovibrio bacteriovorus enhances antibiotic penetration and biofilm eradication. Journal of Controlled Release, 380, 283-296.

Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59.

Vishwakarma, A., Dang, F., Ferrell, A., Barton, H. A., & Joy, A. (2021). Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface-established biofilms. Journal of the American Chemical Society, 143(25), 9440-9449.

Wang, Y., Li, Z., Ji, L., Sun, J., Gao, F., Yu, R., Li, K., Wang, W., Zhao, W., & Zhong, Q.-Z. (2025). Adhesive Micro-Liquid for Efficient Removal of Bacterial Biofilm Infection. Materials Today Bio, 101525.

Wong, G. C., Antani, J. D., Lele, P. P., Chen, J., Nan, B., Kühn, M. J., Persat, A., Bru, J.-L., Høyland-Kroghsbo, N. M., & Siryaporn, A. (2021). Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical biology, 18(5), 051501.

Wu, Y.-K., Cheng, N.-C., & Cheng, C.-M. (2019). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in Biotechnology, 37(5), 505-517.

Xiu, W., Shan, J., Yang, K., Xiao, H., Yuwen, L., & Wang, L. (2021). Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2(1), 20200065.

Yan, D., Huang, Y., Zhang, J., Wu, Q., Song, G., Ji, J., Jin, Q., Wang, D., & Tang, B. Z. (2023). Adding flying wings: butterfly-shaped NIR-II AIEgens with multiple molecular rotors for photothermal combating of bacterial biofilms. Journal of the American Chemical Society, 145(47), 25705-25715.

Yuan, K., Jurado‐Sánchez, B., & Escarpa, A. (2021). Dual‐Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angewandte Chemie International Edition, 60(9), 4915-4924.

Zhang, S., He, W., Dong, J., Chan, Y. K., Lai, S., & Deng, Y. (2025). Tailoring Versatile Nanoheterojunction-Incorporated Hydrogel Dressing for Wound Bacterial Biofilm Infection Theranostics. ACS Nano.

Zhou, R., Gao, J., Li, Y., Raziq, K., Chen, L., & Sun, D. (2025). An aromatic ruthenium complex with high antimicrobial efficiency by disrupting biofilms and recruiting M2 macrophages. Inorganica Chimica Acta, 578, 122546.

Downloads

Published

2025-07-08

How to Cite

1.
Khan MN, Usmani A, Hamad MA, Farrukh Alavi A, Shelke GS. Challenges And Methods in Laboratory Testing of Biofilm-Forming Pathogens in Chronic Infections. J Neonatal Surg [Internet]. 2025Jul.8 [cited 2025Sep.19];14(32S):4351-62. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/8124

Similar Articles

You may also start an advanced similarity search for this article.