Advancing Personality Insight Automation: A Hybrid Machine Learning Strategy

Authors

  • Neha Gupta
  • Shalu Dadheech
  • Ashish Bansal

Keywords:

Automated Personality Prediction, Machine Learning, MBTI, LightGBM, Ensemble Modeling, Text Classification

Abstract

This academic paper investigates how to improve automated personality prediction by using machine learning techniques. The core of this study is the use of the Myers-Briggs Type Indicator (MBTI) dataset obtained from Kaggle, with the goal of improving the prediction accuracy of the Judging-Perceiving (J/P) dichotomy. Previous studies have highlighted significant obstacles to predicting this factor, often due to issues like data loss and model inefficiencies. This examination looks at several machine learning algorithms, including Random Forest, XGBoost, K-Nearest Neighbors (KNN), Logistic Regression, and LightGBM, to see how they can overcome these obstacles. The results show that traditional single-model techniques are not as reliable or precise as ensemble models, particularly LightGBM. To overcome data imbalance, further sophisticated data preparation techniques are added, such as TF-IDF vectorization and SMOTE. By amalgamating these diverse modelling techniques, this research establishes a sturdy framework for automated personality forecasting, supplying valuable insights for fields such as psychology, marketing, and human resources. By bridging critical gaps in existing methodologies and proposing innovative remedies for more precise and dependable personality prediction, this paper makes a significant contribution to the academic domain.

Downloads

Download data is not yet available.

References

Wenyu Li1 , Chengpeng Wu1 , Xin Hu1 , Jingjing Chen2 , Shimin Fu3 Fei Wang1 4 , Dan Zhang1 4(2022). Quantitative Personality Predictions From a Brief EEG Recording. IEEE Transactions .

Affective Computing, doi: 10.1109/taffc.2020.3008775and Intelligent Systems

Wiebke, Bleidorn., Patrick, L., Hill., Mitja, D., Back., Jaap, J., A., Denissen., Marie, Hennecke., Christopher, J., Hopwood., Markus, Jokela., Christian, Kandler., Richard, E., Lucas., Maike, Luhmann., Ulrich, Orth., Jenny, Wagner., Cornelia, Wrzus., Johannes, Zimmermann., Brent, W., Roberts. (2019). The policy relevance of personality traits. American Psychologist, doi: 10.1037/AMP0000503

Yağmur, Güçlütürk., Umut, Güçlü., Marc, Pérez., Hugo, Jair, Escalante., Xavier, Baró., Carlos, Andujar., Isabelle, Guyon., Julio, C., S., Jacques, Junior., Meysam, Madadi., Sergio, Escalera., Marcel, A., J., van, Gerven., Rob, van, Lier. (2017). Visualizing Apparent Personality Analysis with Deep Residual Networks. doi: 10.1109/ICCVW.2017.367

Madhura, Jayaratne., Buddhi, Jayatilleke. (2020). Predicting Personality Using Answers to Open-Ended Interview Questions. IEEE Access, doi: 10.1109/ACCESS.2020.3004002

Hao, L., Chundong, W., Qingbo, H. (2023). A novel personality detection method based on high-dimensional psycholinguistic features and improved distributed Gray Wolf Optimizer for feature selection. Information Processing and Management, doi 10.1016/j.ipm.2022.103217

Hans, Christian., Derwin, Suhartono., Andry, Chowanda., Kamal, Z., Zamli. (2021). Using a pre-trained language model and model averaging, text-based personality prediction from multiple social media data sources. Journal of Big Data, doi: 10.1186/S40537-021-00459-1

Beck, E. D., & Jackson, J. J. (2022). A meta-analysis of personality prediction: Robustness and boundary conditions. Journal of Personality and Social Psychology, 122(3), 523–553. https://doi.org/10.1037/pspp0000386

Mark, D., Lescroart. (2022). Limits of prediction accuracy on randomly selected natural images for model evaluation. Journal of Vision, doi: 10.1167/jov.22.3.52

María, Fernanda, Vergara, Mengual. (2022). Automatic personality prediction: an enhanced method using ensemble modelling. Neural Computing and Applications, doi: 10.1007/s00521-022-07444-6

Onno, Pepijn, Kampman., Elham, J., Barezi., Dario, Bertero., Pascale, Fung. (2018). Investigating Audio, Video, and Text Fusion Methods for End-to-End Automatic Personality Prediction. doi: 10.18653/V1/P18-2096

Gal, Lavi., Jonathan, Rosenblatt., Michael, Gilead. (2022). A prediction-focused approach to personality modelling. Dental science reports, doi: 10.1038/s41598-022-16108-3

Yash, Mehta., Samin, Fatehi., Amir Mohammad, Kazameini., Clemens, Stachl., Erik, C., Sauleh, E. (2020). Bottom-Up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features. doi: 10.1109/ICDM50108.2020.00146

Isha, G., Manasvi, J., Prashant, J. (2023). Smart-Hire Personality Prediction Using ML. doi: 10.1109/ICDT57929.2023.10151367

Nuo, H., Sijia, Li., Feng, Huang., Yeye, Wen., Yue, Su., Linyan, Li., Xiaoqian, Liu., Tingshao, Zhu. (2023). How social media expression can reveal personality. Frontiers in Psychiatry, doi: 10.3389/fpsyt.2023.1052844

Speer, A. B., Christiansen, N. D., Robie, C., & Jacobs, R. R. (2022). Measurement specificity with modern methods: Using dimensions,

facets, and items from personality assessments to predict performance. Journal of Applied Psychology, 107(8), 1428–1439. https://doi.org/10.1037/apl0000618

Damien, L., Joseph, A., Gyorda., Erika, L., Moen., Nicholas, C., Jacobson. (2022). Using passive sensor data to probe social structure associations with personality changes: A synthesis of network analysis and machine learning. PLOS ONE, doi: 10.1371/journal.pone.0277516

Sucheta, L., Jeffrey, S., Saltz. (2023). The Need for an Enhanced Process Methodology for Ethical Data Science Projects. Ethics, doi: 10.1109/ETHICS57328.2023.10155007 Mihaela, Cazacu., Emilia, Titan. (2020). Adapting CRISP-DM for Social Sciences. Brain, doi: 10.18662/BRAIN/11.2SUP1/97

Vivek, Bhakta, Mathema., Kassaporn, Duangkumpha., Kwanjeera, Wanichthanarak., Narumol, Jariyasopit., Esha, Dhakal., Nuankanya, Sathirapongsasuti., Chagriya, Kitiyakara., Yongyut, Sirivatanauksorn., Sakda, Khoomrung. (2022). CRISP: a deep learning architecture for GC × GC–TOFMS contour ROI identification, simulation and analysis in imaging metabolomics. Briefings in Bioinformatics, doi: 10.1093/bib/bbab550

Sen, Cheng. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, doi: 10.3389/FNCIR.2013.00088Sen, Cheng. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, doi: 10.3389/FNCIR.2013.00088

Dolores, G.-T., Dolores, G.-T., Ann, C, Bilbrey., Ester, Carolina, Apesoa-Varano., Rita, Ghatak., Katherine, K., Kim., Fawn, A., Cothran. (2020). Conceptual Framework to Guide Intervention Research Across the Trajectory of Dementia Caregiving. Gerontologist, doi: 10.1093/GERONT/GNZ157

Avinash, Gaikwad., Avinash, Gaikwad., Ashwin, Nandagiri., Ashwin, Nandagiri., David, L., Potter., Reza, Nosrati., Anne, E., O’Connor., Anne, E., O’Connor., Sameer, Jadhav., Julio, Soria., Ranganathan, Prabhakar., Moira, K, O'Bryan. (2021). CRISPs Function to Boost Sperm Power Output and Motility. Frontiers in Cell and Developmental Biology, doi: 10.3389/FCELL.2021.693258

Sarang Narkade, Understanding Confusion matrix,2018,https://towardsdatascience.com/understanding-confusion-matrix- a9ad42dcfd62

En, Jun, Choong., Kasturi, Dewi, Varathan. (2021). Predicting judging- perceiving of Myers-Briggs Type Indicator (MBTI) in an online social forum. PeerJ, doi: 10.7717/PEERJ.11382

Nomura, A., Almeida, M., Johnson, S., & Pruinelli, L. (2021). Pain Information Model and Its Potential for Predictive Analytics: Applicability of a Big Data Science Framework. Journal of Nursing Scholarship, 53(3), 315-322.

Nils, M. (2020). Analysis of an Intelligence Dataset. Journal of Intelligence, doi10.3390/JINTELLIGENCE8040039.

Downloads

Published

2025-07-10

How to Cite

1.
Gupta N, Dadheech S, Bansal A. Advancing Personality Insight Automation: A Hybrid Machine Learning Strategy. J Neonatal Surg [Internet]. 2025Jul.10 [cited 2025Oct.13];14(32S):4718-26. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/8185