Hybrid NiO–Bi(III) Schiff Base Complexes: Spectroscopic Insight into Protein Binding and Enhanced Antibacterial Activity
Keywords:
Schiff base complexes, Bismuth (III), NiO hybrids, Optical properties, Protein binding, Antibacterial activityAbstract
This study shows the successful creation of new hybrid nanomaterials by combining Bi(III) Schiff base complexes from nitro-Salen ligands with NiO nanoparticles. Spectroscopic techniques like FT-IR and UV-Vis confirmed strong coordination and improved optical properties, including a reduced band gap of 2.12 eV. XRD and FE-SEM analyses displayed porous, nanoscale structures with clear shapes. These hybrids showed strong interactions with serum proteins BSA, which was evident through fluorescence quenching and molecular docking, with a binding energy of –8.1 kcal/mol. Notably, the antibacterial activity of the hybrids increased significantly, especially when combined with Ampicillin. Overall, these results emphasize the potential of these multifunctional materials in biomedical uses like biosensing, targeted drug delivery, and antimicrobial treatments.
Downloads
References
Zhu, Y., Wang X., Chen L., and Li Q., Nanostructured materials for multifunctionalapplications. Journal of Materials Chemistry B, 2020. 8: p.1123–1132.
Ghosh, S., Das R., and Banerjee P., Schiff bases as versatile ligands. CoordinationChemistry Reviews, 2018. 374: p.239–258.
Tripathi, A., Verma S., and Singh R.K., Bi (III) complexes in drug design. Journal ofInorganic Biochemistry, 2021. 215: p.111305.
Hong, M., Liu J., and Wang Y., Coordination chemistry of bismuth-based materials.Dalton Transactions, 2017. 46(40): p.13700–13711.
Fontana, M.G., Corrosion Engineering. 3rd ed. McGraw-Hill, 1986.
Hosseini, M.G., and Dehghani A., Eco-friendly corrosion inhibition of mild steel byMalva sylvestris extract: Experimental and theoretical studies. Journal of Colloid andInterface Science, 2021. 589: p.404–418.
Liu, H., Zhang Y., Chen X., and Zhou L., Effect of nitro substituents on ligand electronicproperties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019. 215: p.113–120.
Tauc, J., Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1974. 9: p.755–768.
Kumar, P., Sharma A., Mehta R., and Singh S., Metal-ligand charge transfer in Schiff base-NiO nanocomposites. Journal of Electroanalytical Chemistry, 2022. 899: p.115685.
Wang, X., Yu J., Zhao L., and Li H., Antibacterial applications of bismuth-based nanomaterials. Applied Surface Science, 2023. 607: p.154912.
Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 2006.
Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. 6th ed. Wiley-Interscience, 2009.
Mahalingam, T., Rajendran S., and Sundaram K., Electrodeposition and properties of CdTe thin films. Materials Letters, 2003. 57: p.1151–1155.
Thakur, A.S., Kumar M., and Singh R., Spectroscopic analysis of metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 118: p.105–110.
Silverstein, R.M., Webster F.X., and Kiemle D.J., Spectrometric Identification of Organic Compounds. 7th ed. Wiley, 2005.
Garg, B.S., Kumar D., and Singh A.K., Coordination behavior of Schiff bases towards transition metals. Transition Metal Chemistry, 2005. 30: p.382–387.
Saravanan, R., Gracia T., and Gracia F., Photocatalytic activity of metal oxide nanocomposites under visible light. Journal of Molecular Structure, 2017. 1134: p.121–127.
Mubarok, A.M., and Pramudita R.A., Synthesis of bimetallic oxide nanomaterials and their application. Materials Research Express, 2019. 6(8): p.085039.
Pimenov, S.M., and Artem’ev A.V., Synthesis and structural characterization of metal complexes. Inorganica Chimica Acta, 2013. 394: p.605–611.
Malik, M.A., and Younus M., Schiff base metal complexes and their coordination chemistry. Journal of Coordination Chemistry, 2011. 64(4): p.703–717.
Tauc, J., Optical Properties of Solids. Academic Press, New York, 1974.
Wang, H., Liang J., Liu L., and Sun X., Synthesis and band gap engineering of NiO nanostructures. Journal of Physical Chemistry C, 2010. 114: p.990–995.
Zhang, Y., Pan C., Zhu Y., and Wang Y., Bi-doped semiconductor nanocomposites for visible light photocatalysis. Applied Catalysis B: Environmental, 2019. 250: p.201–210.
Chen, X., and Mao S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chemical Reviews, 2007. 107: p.2891–2959.
Sharma, R., Gaur S., Bansal R.K., and Tiwari R.K., Spectral and electronic studies on Schiff base metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 127: p.168–175.
Zhu, J., Liu S., Murali G., Zhang L., and Zhang H., Morphology-controlled synthesis and applications of NiO nanostructures: a review. RSC Advances, 2013. 3: p.23021–23035.
McCreery, R.L., Advanced electrochemical analysis using modern techniques. Chemical Reviews, 2008. 108(7): p.2646–2687.
Jalilian, N., Ghobadi M., Yousefzadeh S., and Rezaei B., Electrochemical detection of biological molecules using modified electrodes. Journal of Electroanalytical Chemistry, 2019. 833: p.78–85.
Zhang, J., Wang Y., Li M., and Huang Y., Recent developments in coordination chemistry for biomedical applications. Coordination Chemistry Reviews, 2019. 390: p.76–99.
Li, Y., Chen W., Zhang G., and Tan L., Synthesis of nanocomposites for sensing applications. Materials Letters, 2018. 211: p.280–283.
Mahalakshmi, K., Mary Jenila, R., Vetha Potheher, I., Lakshmi, V., Thangaraj, V., Bifunctional rGO incorporated NiSe2 nanocomposite as a photocatalyst and an electrode in supercapacitor, Journal of Alloys and Compounds, 2024, 972, doi.org/10.1016/j.jallcom.2023.172699.
Zhang, Y., Wang X., Liu Z., and Chen T., Electrospun nanofibers of ZnO–SnO₂hetero junction with high photocatalytic activity. Journal of Physical Chemistry C, 2010.114: p.7920–7925.
Raj, K., Singh A., Patel S., and Gupta R., [Title not provided]. Journal of Coordination Chemistry, 2015. 68: p.2075–2090.
Kumar, A., Sharma P., Verma R., and Das S., [Title not provided]. Journal of Materials Science, 2021. 56: p.12567–12583.
International Centre for Diffraction Data (ICDD), JCPDS No. 47-1049, Powder Diffraction File. ICDD.
Asadi, Z., Khataee A., and Joo S.W.S., Synthesis and characterization of a bismuth Schiff base complex and its application for degradation of organic pollutants. Journal of Molecular Structure, 2020. 1203: p.127407.
Sudhagar, P., Sathiyanarayanan K., and Kang Y.S., Amorphous nanostructured metal–organic hybrid composites for enhanced electrocatalytic activity. Electrochimica Acta, 2016. 191: p.697–705.
Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 3rd ed. Springer Science+Business Media, New York, 2006.
Bi, S., Song D., Tian Y., Zhou X., and Liu C., Binding of several anti-inflammatory drugs to bovine serum albumin: A fluorescence study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005. 61(4): p.629–636.
He, X.M., and Carter D.C., Atomic structure and chemistry of human serum albumin. Nature, 1992. 358: p.209–215.
Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 2006.
42. Carter, D.C., and Ho J.X., Structure of serum albumin. Advances in Protein Chemistry, 1994. 45: p.153–203.
Bujacz, A., Structures of serum albumins: Recent advances. Acta Crystallographica Section D: Biological Crystallography, 2012. 68(10): p.1278–1289.
Sudlow, G., Birkett D.J., and Wade D.N., The binding of drugs to serum albumin. Molecular Pharmacology, 1975. 11(6): p.824–832.
Fricker, S.P., Metal-based drugs: From serendipity to design. Dalton Transactions, 2007. 43: p.4903–4917.
Patil, S.A., Heras-Martínez M., and Bugarin A., Bismuth coordination chemistry and biological relevance. Coordination Chemistry Reviews, 2017. 351: p.53–70.
Zhang, J. et al., Docking studies and electronic structure of metal complexes as enzyme inhibitors. Journal of Inorganic Biochemistry, 2019. 197: p.110692.
Yadav, D.K., Teli M.D., Ansari A.Q., Mishra A., and Srivastava S., Electrochemical sensors based on Schiff base complexes. Electrochimica Acta, 2021. 388: p.138643.
Kumar, A. et al., Bioinorganic applications of transition metal complexes: Design, docking, and delivery. Inorganica Chimica Acta, 2022. 540: p.121008.
Mohamed, A.R. et al., Catalytic performance of modified nanocomposites. Bioresource Technology, 2017. 246: p.254–262.
Nasrollahzadeh, M. et al., Green synthesis of nanomaterials for catalytic applications. Chemical Record, 2020. 20: p.682–708.
Morones, J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., and Yacaman M.J., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16: p.2346–2353.
Hajipour, M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., and Mahmoudi M., Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012. 30: p.499–511.
Shaikh, S., Nazam N., Rizvi S.M.D., Ahmad K., Baig M.H., Lee E.J., and Choi I., Nanoparticle-based drug delivery systems: Advances and challenges. International Journal of Pharmaceutics, 2019. 566: p.657–676.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.