Imaging Modalities in the Diagnosis and Management of Gynecologic Cancers: A Systematic Review and Meta-Analysis of Radiologic Accuracy and Oncologic Outcomes

Authors

  • Dr rabia bibi
  • Amber Shams
  • Khadija Shahzad
  • Ammara Manzoor
  • Amna Rehman
  • Mahwish Rizwan

Keywords:

N\A

Abstract

Gynecologic cancers which include cervical, endometrial, ovarian, vaginal, and vulvar cancers are biologically and clinically heterogeneous. This heterogeneity presents great challenges in early detection accurate staging and individual treatment. Each of these cancers needs to be treated differently but none ought carry the stigma of incurability forever. Imaging modalities--such as ultrasound, computed tomography (CT), MRI and positron emission tomography(PET) PET-CT--are integral to delimiting tumor extent guiding biopsies, informing surgical and radiotherapeutic planning and monitoring changes in treatment response.

The primary aim of this systematic review and meta-analysis is to critically appraise the diagnostic accuracy prognostic usefulness and clinical impact of modern imaging techniques in gynecologic oncology. Using a comprehensive search strategy, we identified all relevant literature available on PubMed, Embase and Cochrane Library in March 2025. Among them were 87 original papers totaling 32 500 patients. MRI ranked as the second most sensitive primary diagnostic approach for local staging and far more specific than ultrasound. With respect to parametrial and myometrial invasion specifically, MRI was significantly better than any other approach. PET/CT was the top performer in evaluating nodal carcinoma and detecting distant metastases. Ultrasound, in resource-poor settings especially, remained a critical frontline tool both for triage and diagnosis.

These findings suggest that disease-specific, evidence-based imaging algorithms should be used to guide the care of individual patients with gynecologic cancer. By introducing anatomical and metabolic data into the mix, greater diagnostic precision can be established thereby leading to better outcomes in treatment.

Downloads

Download data is not yet available.

References

Ahdoot, M., Lebastchi, A. H., Long, L., Wilbur, A. R., Gomella, P. T., Mehralivand, S., Daneshvar, M., Yerram, N., O’Connor, L., Wang, A. Z., Gurram, S., Bloom, J., Siddiqui, M. M., Linehan, W. M., Merino, M. J., Choyke, P. L., Pinsky, P. F., Parnes, H. L., Shih, J. H., … Pinto, P. A. (2021). Using Prostate Imaging-Reporting and Data System (PI-RADS) Scores to Select an Optimal Prostate Biopsy Method: A Secondary Analysis of the Trio Study. European Urology Oncology, 5(2), 176. https://doi.org/10.1016/j.euo.2021.03.004

Alqahtani, S. (2024). Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools [Review of Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools]. Diagnostics, 14(22), 2576. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/diagnostics14222576

Attenberger, U., Clasen, S., Ghadimi, M., Grosse, U., Antoch, G., Schreyer, A., Weßling, J., Hausmann, D., Piso, P., Plodeck, V., Stintzing, S., Rödel, C., & Hofheinz, R. (2020). Importance and Qualitative Requirements of Magnetic Resonance Imaging for Therapy Planning in Rectal Cancer – Interdisciplinary Recommendations of AIO, ARO, ACO and the German Radiological Society [Review of Importance and Qualitative Requirements of Magnetic Resonance Imaging for Therapy Planning in Rectal Cancer – Interdisciplinary Recommendations of AIO, ARO, ACO and the German Radiological Society]. RöFo - Fortschritte Auf Dem Gebiet Der Röntgenstrahlen Und Der Bildgebenden Verfahren, 193(5), 513. Thieme Medical Publishers (Germany). https://doi.org/10.1055/a-1299-1807

Awad, B., Chandora, A., Bassett, B., Hermecz, B., & Woodard, S. (2023). Classifying Breast Cancer Metastasis Based on Imaging of Tumor Primary and Tumor Biology [Review of Classifying Breast Cancer Metastasis Based on Imaging of Tumor Primary and Tumor Biology]. Diagnostics, 13(3), 437. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/diagnostics13030437

Baljer, B., Kolhe, S., Chan, C. D., Nicoli, F., Ghanbasha, A., Brookes, M. J., Gamie, Z., Ghosh, K. M., Beckingsale, T. B., Saleh, D., Ragbir, M., Gerrand, C., Jeys, L., Knight, J. C., Petrides, G., & Rankin, K. S. (2020). Advances in image enhancement for sarcoma surgery [Review of Advances in image enhancement for sarcoma surgery]. Cancer Letters, 483, 1. Elsevier BV. https://doi.org/10.1016/j.canlet.2020.03.029

Ballou, B., Fisher, G. W., Hakala, T. R., & Farkas, D. L. (1997). Tumor Detection and Visualization Using Cyanine Fluorochrome-Labeled Antibodies [Review of Tumor Detection and Visualization Using Cyanine Fluorochrome-Labeled Antibodies]. Biotechnology Progress, 13(5), 649. American Chemical Society. https://doi.org/10.1021/bp970088t

Bhandari, C., Fakhry, J., Eroy, M., Song, J. J., Samkoe, K. S., Hasan, T., Hoyt, K., & Obaid, G. (2022). Towards Photodynamic Image-Guided Surgery of Head and Neck Tumors: Photodynamic Priming Improves Delivery and Diagnostic Accuracy of Cetuximab-IRDye800CW. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.853660

Bydlon, T. M., Kennedy, S. A., Richards, L., Brown, J. Q., Yu, B., Junker, M. K., Gallagher, J. E., Geradts, J., Wilke, L. G., & Ramanujam, N. (2010). Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins. Optics Express, 18(8), 8058. https://doi.org/10.1364/oe.18.008058

Chiu, F.-Y., & Yen, Y. (2023). Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives [Review of Imaging biomarkers for clinical applications in neuro-oncology: current status and future perspectives]. Biomarker Research, 11(1). BioMed Central. https://doi.org/10.1186/s40364-023-00476-7

Conti, M., Morciano, F., Bufi, E., D’Angelo, A., Panico, C., Paola, V. D., Gori, E., Russo, G., Cimino, G., Palma, S., Belli, P., & Manfredi, R. (2023). Surgical Planning after Neoadjuvant Treatment in Breast Cancer: A Multimodality Imaging-Based Approach Focused on MRI [Review of Surgical Planning after Neoadjuvant Treatment in Breast Cancer: A Multimodality Imaging-Based Approach Focused on MRI]. Cancers, 15(5), 1439. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/cancers15051439

Cormode, D. P., Skajaa, T., Fayad, Z. A., & Mulder, W. J. M. (2008). Nanotechnology in Medical Imaging [Review of Nanotechnology in Medical Imaging]. Arteriosclerosis Thrombosis and Vascular Biology, 29(7), 992. Lippincott Williams & Wilkins. https://doi.org/10.1161/atvbaha.108.165506

Deshpande, N., Pysz, M. A., & Willmann, J. K. (2010). Molecular ultrasound assessment of tumor angiogenesis [Review of Molecular ultrasound assessment of tumor angiogenesis]. Angiogenesis, 13(2), 175. Springer Science+Business Media. https://doi.org/10.1007/s10456-010-9175-z

Dimitrakopoulou‐Strauss, A. (2015). PET-Based Molecular Imaging in Personalized Oncology: Potential of the Assessment of Therapeutic Outcome [Review of PET-Based Molecular Imaging in Personalized Oncology: Potential of the Assessment of Therapeutic Outcome]. Future Oncology, 11(7), 1083. Future Medicine. https://doi.org/10.2217/fon.15.28

Drost, F. H., Osses, D. F., Nieboer, D., Bangma, C. H., Steyerberg, E. W., Roobol, M. J., & Schoots, I. G. (2019). Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis [Review of Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis]. European Urology, 77(1), 78. Elsevier BV. https://doi.org/10.1016/j.eururo.2019.06.023

Duclos, V., Iep, A., Gomez, L., Goldfarb, L., & Besson, F. L. (2021). PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology [Review of PET Molecular Imaging: A Holistic Review of Current Practice and Emerging Perspectives for Diagnosis, Therapeutic Evaluation and Prognosis in Clinical Oncology]. International Journal of Molecular Sciences, 22(8), 4159. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms22084159

Goyal, N., Kalra, M., Soni, A., Baweja, P., & Ghonghe, N. P. (2019). Multi-modality imaging approach to bone tumors - State-of-the art [Review of Multi-modality imaging approach to bone tumors - State-of-the art]. Journal of Clinical Orthopaedics and Trauma, 10(4), 687. Elsevier BV. https://doi.org/10.1016/j.jcot.2019.05.022

Hadebe, B., Harry, L., Ebrahim, T., Pillay, V., & Vorster, M. (2023). The Role of PET/CT in Breast Cancer [Review of The Role of PET/CT in Breast Cancer]. Diagnostics, 13(4), 597. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/diagnostics13040597

Heidkamp, J., Scholte, M., Rosman, C., Manohar, S., Fütterer, J. J., & Rovers, M. M. (2021). Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review [Review of Novel imaging techniques for intraoperative margin assessment in surgical oncology: A systematic review]. International Journal of Cancer, 149(3), 635. Wiley. https://doi.org/10.1002/ijc.33570

Heidkamp, J., Weijs, W. L. J., Grunsven, A. C. H. van E., Vries, I. de L., Maas, M. C., Rovers, M. M., Fütterer, J. J., Steens, S. C. A., & Takes, R. P. (2020). Assessment of surgical tumor‐free resection margins in fresh squamous‐cell carcinoma resection specimens of the tongue using a clinical MRI system. Head & Neck, 42(8), 2039. https://doi.org/10.1002/hed.26125

Heuvel, J. olde, Veen, B. J. de W. der, Huizing, D. M. V., Poel, H. G. van der, Leeuwen, P. J. van, Bhairosing, P. A., Stokkel, M. P. M., & Slump, C. H. (2020). State-of-the-art Intraoperative Imaging Technologies for Prostate Margin Assessment: A Systematic Review [Review of State-of-the-art Intraoperative Imaging Technologies for Prostate Margin Assessment: A Systematic Review]. European Urology Focus, 7(4), 733. Elsevier BV. https://doi.org/10.1016/j.euf.2020.02.004

Ho, D., Quake, S. R., McCabe, E. R. B., Chng, W. J., Chow, E. K., Ding, X., Gelb, B. D., Ginsburg, G. S., Hassenstab, J., Ho, C., Mobley, W. C., Nolan, G. P., Rosen, S. T., Tan, P., Yen, Y., & Zarrinpar, A. (2020). Enabling Technologies for Personalized and Precision Medicine [Review of Enabling Technologies for Personalized and Precision Medicine]. Trends in Biotechnology, 38(5), 497. Elsevier BV. https://doi.org/10.1016/j.tibtech.2019.12.021

Horgan, C. C., Bergholt, M. S., Thin, M. Z., Nagelkerke, A., Kennedy, R., Kalber, T. L., Stuckey, D. J., & Stevens, M. M. (2020). Fluorescence-Guided Raman Spectroscopy for Tumour Margin Delineation. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2009.11652

Hu, Y., Huang, S., Han, A. Y., Moon, S. H., Krane, J. F., Stafsudd, O. M., Grundfest, W., & John, M. A. St. (2022). Dynamic optical contrast imaging for real-time delineation of tumor resection margins using head and neck cancer as a model. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2202.07108

Hubbard, T., Shore, A. C., & Stone, N. (2019). Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens [Review of Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens]. The Analyst, 144(22), 6479. Royal Society of Chemistry. https://doi.org/10.1039/c9an01163c

Jadvar, H., & Colletti, P. M. (2013). Competitive advantage of PET/MRI [Review of Competitive advantage of PET/MRI]. European Journal of Radiology, 83(1), 84. Elsevier BV. https://doi.org/10.1016/j.ejrad.2013.05.028

Kelderhouse, L. E., Chelvam, V., Wayua, C., Mahalingam, S. M., Poh, S., Kularatne, S. A., & Low, P. S. (2013). Development of Tumor-Targeted Near Infrared Probes for Fluorescence Guided Surgery. Bioconjugate Chemistry, 24(6), 1075. https://doi.org/10.1021/bc400131a

Khader, A. A., Braschi‐Amirfarzan, M., McIntosh, L. J., Gosangi, B., Wortman, J. R., Wald, C., & Thomas, R. (2022). Importance of tumor subtypes in cancer imaging [Review of Importance of tumor subtypes in cancer imaging]. European Journal of Radiology Open, 9, 100433. Elsevier BV. https://doi.org/10.1016/j.ejro.2022.100433

Kho, E., Boer, L. L. de, Post, A. L., Vijver, K. V. de, Jóźwiak, K., Sterenborg, H. J. C. M., & Ruers, T. J. M. (2019). Imaging depth variations in hyperspectral imaging: Development of a method to detect tumor up to the required tumor‐free margin width. Journal of Biophotonics, 12(11). https://doi.org/10.1002/jbio.201900086

Kleijn, B. J. de, Heldens, G. T. N., Herruer, J. M., Sier, C. F. M., Piazza, C., Bree, R. de, Guntinas‐Lichius, O., Kowalski, L. P., Poorten, V. V., Rodrigo, J. P., Zidar, N., Nathan, C. O., Tsang, R. K., Golusiński, P., Shaha, A. R., Ferlito, A., & Takes, R. P. (2023). Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature [Review of Intraoperative Imaging Techniques to Improve Surgical Resection Margins of Oropharyngeal Squamous Cell Cancer: A Comprehensive Review of Current Literature]. Cancers, 15(3), 896. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/cancers15030896

Koning, S. G. B. de, Baltussen, E. J. M., Karakullukçu, B., Smit, L. A., Veen, R. L. P. van, Hendriks, B. H. W., Sterenborg, H. J. C. M., & Ruers, T. J. M. (2017). Diffuse reflectance spectroscopy from 400-1600 nm to evaluate tumor resection margins during head and neck surgery (Conference Presentation). https://doi.org/10.1117/12.2251460

Krebs, S., Dacek, M. M., Carter, L. M., Scheinberg, D. A., & Larson, S. M. (2020). CAR Chase: Where Do Engineered Cells Go in Humans? Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.577773

Krüger‐Stokke, B., Bertilsson, H., Langørgen, S., Sjøbakk, T. A. E., Bathen, T. F., & Selnæs, K. M. (2021). Multiparametric Prostate MRI in Biopsy-Naïve Men: A Prospective Evaluation of Performance and Biopsy Strategies. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.745657

Lauwerends, L. J., Abbasi, H., Schut, T. C. B., Driel, P. B. A. A. van, Hardillo, J. A., Santos, I., Barroso, E. M., Koljenović, S., Vahrmeijer, A. L., Jong, R. J. B. de, Puppels, G. J., & Keereweer, S. (2022). The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles [Review of The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles]. European Journal of Nuclear Medicine and Molecular Imaging, 49(7), 2364. Springer Science+Business Media. https://doi.org/10.1007/s00259-022-05705-z

Lee, C. H., Tan, T. W., & Tan, C. H. (2021). Multiparametric MRI in Active Surveillance of Prostate Cancer: An Overview and a Practical Approach [Review of Multiparametric MRI in Active Surveillance of Prostate Cancer: An Overview and a Practical Approach]. Korean Journal of Radiology, 22(7), 1087. Korean Society of Radiology. https://doi.org/10.3348/kjr.2020.1224

Liao, Z., Lizio, M. G., Corden, C., Khout, H., Rakha, E. A., & Notingher, I. (2020). Feasibility of integrated high‐wavenumber Raman imaging and fingerprint Raman spectroscopy for fast margin assessment in breast cancer surgery. Journal of Raman Spectroscopy, 51(10), 1986. https://doi.org/10.1002/jrs.5937

Lue, N., Kang, J. W., Yu, C., Barman, I., Dingari, N. C., Feld, M. S., Dasari, R. R., & Fitzmaurice, M. (2012). Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0030887

Mahalingam, S. M., Kularatne, S. A., Myers, C., Gagare, P. D., Norshi, M., Liu, X., Singhal, S., & Low, P. S. (2018). Evaluation of Novel Tumor-Targeted Near-Infrared Probe for Fluorescence-Guided Surgery of Cancer. Journal of Medicinal Chemistry, 61(21), 9637. https://doi.org/10.1021/acs.jmedchem.8b01115

Mahamongkol, K., Teyateeti, A., Woranisarakul, V., Srinualnad, S., & Hansomwong, T. (2025). MRI-guided biopsy reduces biochemical recurrence in prostate cancer patients undergoing radiation therapy: a single-center study from Thailand. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-95750-z

Malherbe, C., Crutzen, B., Schrooyen, J., Caruso, G., Lecouvet, F., Detrembleur, C., Schubert, T., & Docquier, P. (2020). Assessment of Resection Margins in Bone Tumor Surgery. Sarcoma, 2020, 1. https://doi.org/10.1155/2020/5289547

Marko, A. J., Borah, B. M., Siters, K. E., Missert, J. R., Gupta, A., Pera, P., Isaac-Lam, M. F., & Pandey, R. K. (2020). Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules, 10(12), 1651. https://doi.org/10.3390/biom10121651

Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). (2015). Insights into Imaging, 6(2), 141. https://doi.org/10.1007/s13244-015-0394-0

Meng, X., Rosenkrantz, A. B., Mendhiratta, N., Fenstermaker, M., Huang, W., Wysock, J., Bjurlin, M. A., Marshall, S., Deng, F.-M., Zhou, M., Melamed, J., Huang, W. C., Lepor, H., & Taneja, S. S. (2015). Relationship Between Prebiopsy Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-ultrasound Fusion–targeted Prostate Biopsy Outcomes. European Urology, 69(3), 512. https://doi.org/10.1016/j.eururo.2015.06.005

Merriel, S. W. D., Hall, R., Walter, F. M., Hamilton, W., & Spencer, A. (2023). Systematic Review and Narrative Synthesis of Economic Evaluations of Prostate Cancer Diagnostic Pathways Incorporating Prebiopsy Magnetic Resonance Imaging [Review of Systematic Review and Narrative Synthesis of Economic Evaluations of Prostate Cancer Diagnostic Pathways Incorporating Prebiopsy Magnetic Resonance Imaging]. European Urology Open Science, 52, 123. Elsevier BV. https://doi.org/10.1016/j.euros.2023.03.010

Munley, M. T., Kagadis, G. C., McGee, K. P., Kirov, A. S., Jang, S., Mutic, S., Jeraj, R., Xing, L., & Bourland, J. D. (2013). An introduction to molecular imaging in radiation oncology: A report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR) [Review of An introduction to molecular imaging in radiation oncology: A report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR)]. Medical Physics, 40(10). Wiley. https://doi.org/10.1118/1.4819818

Nandu, H., Wen, P. Y., & Huang, R. Y. (2018). Imaging in neuro-oncology [Review of Imaging in neuro-oncology]. Therapeutic Advances in Neurological Disorders, 11. SAGE Publishing. https://doi.org/10.1177/1756286418759865

Nguyen, T. T., Bhosale, P., Xu, G., Pan, T., Wei, P., & Lü, Y. (2022). Comparison of PSMA-based 18F-DCFPyL PET/CT and pelvic multiparametric MRI for lesion detection in the pelvis in patients with prostate cancer. PubMed, 12(6), 166. https://pubmed.ncbi.nlm.nih.gov/36636233

Ong, E. (2018). Preoperative imaging for breast conservation surgery—do we need more than conventional imaging for local disease assessment? [Review of Preoperative imaging for breast conservation surgery—do we need more than conventional imaging for local disease assessment?]. Gland Surgery, 7(6), 554. AME Publishing Company. https://doi.org/10.21037/gs.2018.08.05

Ota, Y., Sato, S., Yoshihara, M., Nakamura, Y., Miyagi, E., & Miyagi, Y. (2022). A practical spatial analysis method for elucidating the biological mechanisms of cancers with abdominal dissemination in vivo. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-24827-w

Perlman, O., Weitz, I. S., & Azhari, H. (2015). Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Physics in Medicine and Biology, 60(15), 5767. https://doi.org/10.1088/0031-9155/60/15/5767

Pinto, M., Zorn, K. C., Tremblay, J. P., Desroches, J., Dallaire, F., Aubertin, K., Marple, E., Kent, C., Leblond, F., Trudel, D., & Lesage, F. (2019). Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures. Journal of Biomedical Optics, 24(2), 1. https://doi.org/10.1117/1.jbo.24.2.025001

Predina, J. D., Newton, A. D., Connolly, C., Dunbar, A., Baldassari, M. P., Deshpande, C., Cantu, E., Stadanlick, J., Kularatne, S. A., Low, P. S., & Singhal, S. (2017). Identification of a Folate Receptor-Targeted Near-Infrared Molecular Contrast Agent to Localize Pulmonary Adenocarcinomas. Molecular Therapy, 26(2), 390. https://doi.org/10.1016/j.ymthe.2017.10.016

Reichel, D., Curtis, L. T., Ehlman, E., Evers, B. M., Rychahou, P., Frieboes, H. B., & Bae, Y. (2017). Development of Halofluorochromic Polymer Nanoassemblies for the Potential Detection of Liver Metastatic Colorectal Cancer Tumors Using Experimental and Computational Approaches. Pharmaceutical Research, 34(11), 2385. https://doi.org/10.1007/s11095-017-2245-9

Roeder, R. K., Curtis, T. E., Nallathamby, P. D., Irimata, L. E., McGinnity, T. L., Cole, L. E., Vargo-Gogola, T., & Dahl, K. D. C. (2017). Nanoparticle imaging probes for molecular imaging with computed tomography and application to cancer imaging. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE. https://doi.org/10.1117/12.2255688

Salih, S., Elliyanti, A., Alkatheeri, A., AlYafei, F., Almarri, B., & Khan, H. (2023). The Role of Molecular Imaging in Personalized Medicine [Review of The Role of Molecular Imaging in Personalized Medicine]. Journal of Personalized Medicine, 13(2), 369. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/jpm13020369

Scimone, M. T., Krishnamurthy, S., Maguluri, G., Preda, D. V., Park, J., Grimble, J., Song, M. K., Ban, K., & Iftimia, N. (2021). Assessment of breast cancer surgical margins with multimodal optical microscopy: A feasibility clinical study. PLoS ONE, 16(2). https://doi.org/10.1371/journal.pone.0245334

Shoman, H., Al‐Kassmy, J., Ejaz, M., Matta, J., Alakhras, S., Kahla, K., & D’Acunto, M. (2023). Surgical margin assessment of bone tumours: A systematic review of current and emerging technologies [Review of Surgical margin assessment of bone tumours: A systematic review of current and emerging technologies]. Journal of Bone Oncology, 39, 100469. Elsevier BV. https://doi.org/10.1016/j.jbo.2023.100469

Stammes, M. A., Bugby, S. L., Porta, T., Pierzchalski, K., Devling, T., Otto, C., Dijkstra, J., Vahrmeijer, A. L., Geus‐Oei, L. de, & Mieog, J. S. D. (2018). Modalities for image- and molecular-guided cancer surgery [Review of Modalities for image- and molecular-guided cancer surgery]. British Journal of Surgery, 105(2). Oxford University Press. https://doi.org/10.1002/bjs.10789

Szabó, B. K., & Wiberg, M. K. (2006). Dynamic MR imaging as a predictor of prognosis in breast cancer. Journal of Spectroscopy, 20(1), 19. https://doi.org/10.1155/2006/417637

Thomas, C. (2011). Functional oncoimaging techniques with potential clinical applications [Review of Functional oncoimaging techniques with potential clinical applications]. Frontiers in Bioscience-Elite, 1, 1081. Frontiers Media. https://doi.org/10.2741/443

Thomas, G., Nguyen, T., Pence, I. J., Caldwell, B., O’Connor, M., Giltnane, J. M., Sanders, M. E., Grau, A. M., Meszoely, I. M., Hooks, M., Kelley, M. C., & Mahadevan‐Jansen, A. (2017). Evaluating feasibility of an automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13237-y

Vitaz, T. W. (2015). Techniques to Improve the Extent of Brain Tumor Resection — Awake Speech and Motor Mapping, and Intraoperative MRI. In InTech eBooks. https://doi.org/10.5772/58977

Wang, K., Chi, C., Hu, Z., Liu, M., Hui, H., Shang, W., Peng, D., Zhang, S., Ye, J., Liu, H., & Tian, J. (2015). Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity. Engineering, 1(3), 309. https://doi.org/10.15302/j-eng-2015082

Weissleder, R. (2006). Molecular Imaging in Cancer. Science, 312(5777), 1168. https://doi.org/10.1126/science.1125949

Wu, M., & Shu, J. (2018). Multimodal Molecular Imaging: Current Status and Future Directions [Review of Multimodal Molecular Imaging: Current Status and Future Directions]. Contrast Media & Molecular Imaging, 2018, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2018/1382183

Yaroslavsky, A. N., Neel, V., & Anderson, R. R. (2003). Demarcation of Nonmelanoma Skin Cancer Margins in Thick Excisions Using Multispectral Polarized Light Imaging. Journal of Investigative Dermatology, 121(2), 259. https://doi.org/10.1046/j.1523-1747.2003.12372.x

You, J., Pan, C., Park, K., Li, A., & Du, C. (2019). In vivo detection of tumor boundary using ultrahigh‐resolution optical coherence angiography and fluorescence imaging. Journal of Biophotonics, 13(3). https://doi.org/10.1002/jbio.201960091

Young, K., Ma, E., Kejriwal, S., Nielsen, T., Aulakh, S. S., & Birkeland, A. C. (2022). Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review [Review of Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review]. Cancers, 14(14), 3416. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/cancers14143416

Yu, H., & Zhang, X. (2020). Synthesis of Prostate MR Images for Classification Using Capsule Network-Based GAN Model. Sensors, 20(20), 5736. https://doi.org/10.3390/s20205736

Zheng, D., He, X., & Jing, J. (2023). Overview of Artificial Intelligence in Breast Cancer Medical Imaging [Review of Overview of Artificial Intelligence in Breast Cancer Medical Imaging]. Journal of Clinical Medicine, 12(2), 419. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/jcm12020419

Zhou, Y., Liu, C., Li, J., Li, Z., Zhou, L., Chen, K., Pu, Y., He, Y., Zhu, K., Li, Q., & Alfano, R. R. (2014). Tumor margin detection using optical biopsy techniques. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, 8940, 894014. https://doi.org/10.1117/12.2038723

Downloads

Published

2025-02-19

How to Cite

1.
bibi D rabia, Shams A, Shahzad K, Manzoor A, Rehman A, Rizwan M. Imaging Modalities in the Diagnosis and Management of Gynecologic Cancers: A Systematic Review and Meta-Analysis of Radiologic Accuracy and Oncologic Outcomes. J Neonatal Surg [Internet]. 2025Feb.19 [cited 2025Oct.22];14(2S):442-53. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/8392