Beyond Pressure Reduction: A Contemporary Review of Emerging Therapeutic Paradigms and Clinical Innovations in Glaucoma Management

Authors

  • Trisha Tyagi
  • Pooja Dosad
  • Vidya Singh
  • Akrisht Bhatt
  • Muskan Gupta

DOI:

https://doi.org/10.63682/jns.v14i1S.8760

Keywords:

glaucoma, neuroprotection, gene therapy, artificial intelligence, precision medicine, regenerative medicine

Abstract

Glaucoma is still the main cause of irreversible blindness worldwide, impacting over 80 million eyes. The predictable treatment strategy has centred largely on falling intraocular pressure (IOP) through pharmacological, laser, and surgical treatments. But the recognition that glaucoma is progressive even in eyes with best IOP management has initiated new patterns of treatment beyond the traditional pressure-reduction therapy. This in-depth review examines novel therapeutic strategies in the treatment of glaucoma, with a focus on neuroprotection, gene therapy, artificial intelligence technology applications, regenerative medicine, and precision medicine strategies that represent paradigm shifts in modern glaucoma treatment. A systematic review of the literature was conducted on PubMed, Embase, and Cochrane databases, encompassing articles from 2019 to 2025. Keywords used were "glaucoma," "neuroprotection," "gene therapy," "artificial intelligence," "stem cell therapy," and "precision medicine." Recent evidence shows promising advancements in several therapeutic areas: neuroprotective interventions aimed at retinal ganglion cell sparing through BDNF, CNTF, and anti-apoptotic pathways; gene therapy strategies both for IOP decrease and neuroprotection; AI-based diagnostic and monitoring systems with diagnostic accuracy higher than 95%; regenerative medicine applications such as stem cell therapy and optic nerve regeneration; and precision medicine strategies involving pharmacogenomics and tailored risk assessment. The future of glaucoma treatment is shifting toward a multimodal strategy that blends conventional IOP-reducing treatments with neuroprotective, regenerative, and precision medicine techniques. These newer paradigms hold promise for salvaging vision in patients with glaucoma, especially those with normal-tension glaucoma or progressive disease in the setting of optimal IOP management. Keywords: glaucoma, neuroprotection, gene therapy, artificial intelligence, precision medicine, regenerative medicine.

Downloads

Download data is not yet available.

References

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-1911.

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090.

Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268-1279.

The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126(4):498-505.

Anderson DR, Drance SM, Schulzer M. Factors that predict the benefit of lowering intraocular pressure in normal tension glaucoma. Am J Ophthalmol. 2003;136(5):820-829.

Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 2018;32(5):924-930.

Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31(2):152-181.

Nickells RW, Howell GR, Soto I, John SW. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci. 2012;35:153-179.

Libby RT, Li Y, Savinova OV, et al. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005;1(1):17-26.

Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167-175.

Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol. 2020;9(2):42.

Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol. 1996;25(2):147-170.

Lim JI, Ebrahimi KB, Hays JL, et al. Phase I dose-escalation study of intravitreal AAV2-sFLT01 in patients with diabetic macular edema. Mol Ther Methods Clin Dev. 2018;9:124-131.

Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39-57.

Morgan JE. Retinal ganglion cell shrinkage in glaucoma. J Glaucoma. 2002;11(4):365-370.

Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006;25(5):490-513.

Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol. 2011;519(4):599-620.

Bai Y, Xu J, Brahimi F, et al. An agonistic antibody against GDNF family receptor alpha1 (GFRalpha1) might have protective effects on retinal ganglion cells in a rat model of glaucoma. PLoS One. 2010;5(3):e9752.

Pease ME, Zack DJ, Berlinicke C, et al. Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(5):2194-2200.

Kauper K, McGovern C, Sherman S, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2012;53(12):7484-7491.

Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103(10):3896-3901.

McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci. 2002;43(4):1077-1087.

Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013;58(4):311-320.

Lebrun-Julien F, Morquette B, Doumont G, et al. Inhibition of p53 in retinal ganglion cells rescues neurons from death after optic nerve transection. Mol Ther. 2009;17(4):736-743.

Weinreb RN, Liebmann JM, Cioffi GA, et al. Oral memantine for the treatment of glaucoma: design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology. 2018;125(12):1874-1885.

Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017;1(1):CD006539.

Medeiros FA, Weinreb RN, Sample PA, et al. Validation of a predictive model to estimate the risk of conversion from ocular hypertension to glaucoma. Arch Ophthalmol. 2005;123(10):1351-1360.

Wareham LK, Calkins DJ. The neurovascular unit in glaucomatous neurodegeneration. Front Cell Dev Biol. 2020;8:452.

Boye SL, Boye SE, Lewin AS, Hauswirth WW. A comprehensive review of retinal gene therapy. Mol Ther. 2013;21(3):509-519.

Dalkara D, Byrnes LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5(189):189ra76.

Balaggan KS, Binley K, Esapa M, et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med. 2006;8(3):275-285.

Bloquel C, Fabre E, Bureau MF, Scherman D. Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med. 2004;6 Suppl 1:S11-23.

Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res. 2009;88(4):676-682.

Trinity College Dublin. Gene therapy breakthrough holds promise for treating glaucoma. ScienceDaily. 2024 Jun 20. Available from: https://www.sciencedaily.com/releases/2024/06/240620120847.htm

Husain S, Whitlock NA, Rice DS, et al. Effects of latanoprost on rodent retinal ganglion cells. Exp Eye Res. 2008;87(4):331-340.

Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44(10):4357-4365.

Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Müller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A. 1998;95(7):3978-3983.

Park KH, Cozier F, Ong OC, Caprioli J. Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2001;42(7):1522-1530.

Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability. Science. 2009;326(5950):298-301.

Belin S, Nawabi H, Wang C, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron. 2015;86(4):1000-1014.

Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322(5903):963-966.

Levin LA, Crowe ME, Quigley HA, et al. Neuroprotection for glaucoma: requirements for clinical translation. Exp Eye Res. 2017;157:34-37.

Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223-1229.

Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mutation-associated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849-860.

Xiong J, Li Z, Tang L, et al. Artificial intelligence in glaucoma: opportunities, challenges, and future directions. Biomed Eng Online. 2024;23(1):38.

Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019;137(12):1353-1360.

De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342-1350.

Christopher M, Belghith A, Bowd C, et al. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8(1):16685.

Wolfs RC, Klaver CC, Ramrattan RS, van Duijn CM, Hofman A, de Jong PT. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch Ophthalmol. 1998;116(12):1640-1645.

Yousefi S, Kiwaki T, Zheng Y, et al. Detection of longitudinal visual field progression in glaucoma using machine learning. Am J Ophthalmol. 2018;193:71-79.

Mariottoni EB, Jammal AA, Berchuck SI, Hirabayashi K, Estrela T, Medeiros FA. Quantification of retinal nerve fibre layer thickness on optical coherence tomography with a deep learning segmentation-free approach. Sci Rep. 2020;10(1):402.

Dixit A, Yohannan J, Boland MV. Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data. Ophthalmology. 2021;128(7):1016-1026.

Heijl A, Patella VM, Bengtsson B. The Field Analyzer Primer: Effective Perimetry. 4th ed. Dublin, CA: Carl Zeiss Meditec; 2012.

Bengtsson B, Heijl A. SITA Fast, a new rapid perimetric threshold test. Description of methods and evaluation in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand. 1998;76(4):431-437.

Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211-2223.

Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? arXiv preprint arXiv:1712.09923. 2017.

Cellular and Molecular Medicine, University of Ottawa. Harnessing AI to identify new gene-based targets for glaucoma treatment and prevention. ScienceDaily. 2024 Nov 14.

Stern JH, Tian Y, Funderburgh J, et al. Regenerating eye tissues to preserve and restore vision. Cell Stem Cell. 2018;22(6):834-849.

Tanaka T, Yokoi T, Tamalu F, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells. Sci Rep. 2015;5:8344.

Riazuddin SA, Zaghloul NA, Al-Saif A, et al. Missense mutations in TCF8 cause some forms of posterior polymorphous corneal dystrophy and Fuchs endothelial corneal dystrophy. Am J Hum Genet. 2010;86(1):75-81.

Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051-2059.

Harper MM, Grozdanic V, Blits B, et al. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011;52(7):4506-4515.

Tao W, Wen R, Goddard MB, et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002;43(10):3292-3298.

MacLaren RE, Pearson RA, MacNeil A, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203-207.

Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038-1046.

Realini T, Fechtner RD, Atreya K, et al. The effects of prostaglandin F2α analogs on the biology of the eye. Drugs Today (Barc). 2009;45(6):447-458.

Nieminen T, Lehtimäki T, Mäenpää J, et al. Ophthalmic timolol: plasma concentration and systemic cardiopulmonary effects. Scand J Clin Lab Invest. 2007;67(2):237-245.

McCarty CA, Burmester JK, Mukesh BN, Patchett RB, Wilke RA. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch Ophthalmol. 2008;126(7):959-963.

Choquet H, Paylakhi S, Kneeland SC, et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018;9(1):2278.

Craig JE, Han X, Qassim A, et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat Genet. 2020;52(2):160-166.

Funke S, Perumal N, Beck S, et al. Glaucoma related proteomic alterations in human retina samples. Sci Rep. 2016;6:29759.

Drewry M, Helwa I, Allingham RR, Hauser MA, Liu Y. miRNA Profile in Three Different Normal Human Ocular Tissues by miRNA-Seq. Invest Ophthalmol Vis Sci. 2016;57(8):3731-3739.

Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol. 2012;23(2):96-104.

Pillunat LE, Erb C, Jünemann AG, Kimmich F. Micro-invasive glaucoma surgery (MIGS): a review of surgical procedures using stents. Clin Ophthalmol. 2017;11:1583-1600.

Vinod K, Gedde SJ, Feuer WJ, et al. Practice preferences for glaucoma surgery: a survey of the American Glaucoma Society. J Glaucoma. 2017;26(8):687-693.

Samuelson TW, Katz LJ, Wells JM, Duh YJ, Giamporcaro JE; US iStent Study Group. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118(3):459-467.

Latina MA, Sibayan SA, Shin DH, Noecker RJ, Marcellino G. Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology. 1998;105(11):2082-2088.

Vold S, Ahmed II, Craven ER, et al; CyPass Study Group. Two-year COMPASS trial results: supraciliary microstenting with phacoemulsification in patients with open-angle glaucoma and cataracts. Ophthalmology. 2016;123(10):2103-2112.

Schlenker MB, Gulamhusein H, Conrad-Hengerer I, et al. Efficacy, safety, and risk factors for failure of standalone ab interno gelatin microstent implantation versus standalone trabeculectomy. Ophthalmology. 2017;124(11):1579-1588.

Friedman DS, Hahn SR, Gelb L, et al. Doctor-patient communication, health-related beliefs, and adherence in glaucoma results from the Glaucoma Adherence and Persistency Study. Ophthalmology. 2008;115(8):1320-1327.

Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602-624.

Occhiutto ML, Freitas FR, Maranhão RC, Costa VP. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres: correlation between in vitro drug release and in vivo drug bioavailability. J Pharm Pharmacol. 2006;58(9):1245-1250.

Lewis RA, Christie WC, Day DG, et al; Bimatoprost SR Study Group. Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175:137-147.

Kiernan DF, Weiss MJ. Intraocular pressure lowering medications for glaucoma - focus on the beta-blockers. Expert Opin Investig Drugs. 2013;22(8):1013-1018.

Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348-360.

Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2-13.

Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S; Low-pressure Glaucoma Study Group. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151(4):671-681.

Osborne NN, Ugarte M, Chao M, et al. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999;43 Suppl 1:S102-128.

Ritch R, Shields MB, Krupin T. The Glaucomas. 2nd ed. St. Louis: Mosby; 1996.

Mansouri K, Weinreb RN, Liu JH. Efficacy of a contact lens sensor for monitoring 24-h intraocular pressure related patterns. PLoS One. 2015;10(5):e0125530.

Williams PA, Harder JM, Foxworth NE, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355(6326):756-760.

Howell GR, Macalinao DG, Sousa GL, et al. Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest. 2011;121(4):1429-1444.

Tezel G, Yang X, Luo C, et al. Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest Ophthalmol Vis Sci. 2007;48(2):705-714.

Downloads

Published

2025-08-06

How to Cite

1.
Tyagi T, Dosad P, Singh V, Bhatt A, Gupta M. Beyond Pressure Reduction: A Contemporary Review of Emerging Therapeutic Paradigms and Clinical Innovations in Glaucoma Management. J Neonatal Surg [Internet]. 2025Aug.6 [cited 2025Sep.19];14(1S):1350-6. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/8760

Similar Articles

You may also start an advanced similarity search for this article.