Optimization and Evaluation of Azithromycin-Loaded Organogels: In- Vitro Characterization and Rheological Behavior Studies
Keywords:
Organogels, azithromycin, Propionibacterium acnes, lecithin, CarbopolAbstract
This research aims to formulate azithromycin organogels for the localized treatment of skin infections, such as acne vulgaris and wound infections. By delivering azithromycin topically, the study seeks to minimize systemic side effects like diarrhoea, nausea, and abdominal pain. This approach offers a non-invasive administration method, avoids first-pass metabolism, improves patient compliance, suits nauseated individuals, reduces dosage through direct application to affected areas, and enhances overall acceptance. Additionally, the gel serves as a scaffold biomaterial to support wound healing. Findings indicate that an IPM-Lecithin (300 mM) oleogel with Carbopol 940 as an organogelator is a promising delivery system. The organogels were optimized by varying concentrations of Carbopol 940, Isopropyl Alcohol, and Propylene Glycol, while maintaining a fixed Triethanolamine weight ratio. A pilot study identified the lecithin-based azithromycin oleogel as the most effective formulation, prompting further investigation. Results highlight its ability to accelerate healing of Propionibacterium acnes-related infected acne, alongside demonstrating stability, safety, and cost-effectiveness as key antibacterial attributes...
Downloads
References
Alkilani, A. Z.; Nasereddin, J.; Hamed, R.; Nimrawi, S.; Hussein,G.; Abo-Zour, H.; Donnelly, R. F. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022, 14, 1152.
Alkilani, A. Z.; McCrudden, M. T. C.; Donnelly, R. F.Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015, 7, 438−470.
Patra, J. K.; Das, G.; Fraceto, L. F.; Campos, E. V. R.; Rodriguez- Torres, M. D. P.; Acosta-Torres, L. S.; Diaz-Torres, L. A.; Grillo, R.; Swamy, M. K.; Sharma, S.; Habtemariam, S.; Shin, H.-S. Nano based drug delivery systems: recent developments and future prospects. J.Nanobiotechnology. 2018, 16, 71.
Palac, Z.; Engesland, A.; Flaten, G. E.; Škalko-Basnet, N.; Filipović-Grčić, J.; Vanić, Ž. Liposomes for (trans) dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res. 2014, 24, 313−322.
Singh, D.; Pradhan, M.; Nag, M.; Singh, M. R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol 2015, 43, 282−290.
Sunoqrot, S.; Bae, J. W.; Jin, S.-E.; Pearson, M.; Hong, Y.; Hong, S. Kinetically controlled cellular interactions of polymer− polymer and polymer− liposome nanohybrid systems. Bioconjugate Chem. 2011, 22, 466−474.
Masjedi, M.; Montahaei, T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021, 61, 102234.
Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S.; Niosomes. A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020, 56, 101581.
Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present:The state of the art. Adv. Colloid Interface Sci. 2014, 205, 187−206.
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18−39.
Kazi, K. M.; Mandal, A. S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M.; Kuotsu, K. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010, 1, 374−80.
Babadi, D.; Dadashzadeh, S.; Osouli, M.; Abbasian, Z.; Daryabari, M. S.; Sadrai, S.; Haeri, A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021, 62, 102324.
Lode, H.; Schaberg, T. Azithromycin in lower respiratory tract infections. Scand J Infect Dis Suppl 1992, 83, 26−33.
Langtry, H. D.; Balfour, J. A. Azithromycin. A review of its use in paediatric infectious diseases. Drugs 1998, 56, 273−297.
Kardeh, S.; Saki, N.; Saki, F.; Jowkar, B.; Kardeh, S. A.; Moein, M. H.; Khorraminejad-Shirazi, M. H. Efficacy of Azithromycin in Treatment of Acne Vulgaris: A Mini Review. World J. Surg. 2019, 8, 127−134
Amaya-Tapia, G.; Aguirre-Avalos, G.; Andrade-Villanueva, J.; Peredo-González, G.; Morfín-Otero, R.; Esparza-Ahumada, S.; Rodríguez-Noriega, E. Once-daily azithromycin in the treatment of adult skin and skin-structure infections. J. Antimicrob. Chemother. 1993, 31 Suppl E, 129−35.
Mallory, S. B. Azithromycin compared with cephalexin in the treatment of skin and skin structure infections. Am J Med 1991, 91, 36s−39s.
Ovetchkine, P.; Rieder, M. J.; Society, C. P.; Therapy, D.; Committee, H. S. Azithromycin use in paediatrics: A practical overview. Paediatr Child Health 2013, 18, 311−313.
Taghe, S.; Mirzaeei, S.; Alany, R. G.; Nokhodchi, A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of azithromycin. Biomedicines 2020, 8, 466.
Zeng, L.; Xu, P.; Choonara, I.; Bo, Z.; Pan, X.; Li, W.; Ni, X.; Xiong, T.; Chen, C.; Huang, L.; Qazi, S. A.; Mu, D.; Zhang, L. Safety of azithromycin in pediatrics: a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2020, 76, 1709−1721.
Gandhi, S. V.; Rodriguez, W.; Khan, M.; Polli, J. E. Considerations for a Pediatric Biopharmaceutics Classification System (BCS): application to five drugs. Aaps Pharmscitech 2014, 15, 601− 611.
Rautio, J.; Nevalainen, T.; Taipale, H.; Vepsäläinen, J.; Gynther, J.; Laine, K.; Järvinen, T. Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation. Eur. J. Pharm. Sci. 2000, 11, 157−163.
Bartosova, L.; Bajgar, J. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem. 2012, 19, 4671−4677.
Balouiri, M.; Sadiki, M.; Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71−79.
Edition, A. S. E. CLSI document M02-A11. CLSI 2012, 32, 76.
Sheehan, D. J.; Brown, S. D.; Pfaller, M. A.; Warnock, D. W.; Rex, J. H.; Chaturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M. A.; Moore, L. S.; Odds, F.Method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline; National Committee for Clinical Laboratory Standards M27-A2: Pennsylvania, USA, 2004.
Hamed, R.; Al-Adhami, Y.; Abu-Huwaij, R. Concentration of a microemulsion influences the mechanical properties of ibuprofen in situ microgels. Int. J. Pharm. 2019, 570, 118684.
Obaidat, R.; Abu Kwiak, A. D. A.; Hamed, R. Development of combined therapy of metronidazole and ibuprofen using in situ microgels for the treatment of periodontitis. J. Drug. Deliv. Sci.Technol. 2022, 71, 103314.
Mahmoud, N. N.; Hamed, R.; Khalil, E. A. Colloidal stability and rheological properties of gold nanoparticle−loaded polymeric hydrogels: impact of nanoparticle’s shape, surface modification, and concentration. Colloid Polym. Sci. 2020, 298, 989−999.
Hamed, R.; Basil, M.; AlBaraghthi, T.; Sunoqrot, S.; Tarawneh, O. Nanoemulsion-based gel formulation of diclofenac diethylamine: design, optimization, rheological behavior and in vitro diffusion studies. Pharm. Dev.Technol. 2016, 21, 980−989.
Abdelkader, H.; Alani, A. W. G.; Alany, R. G. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv 2014, 21, 87−100.
Manosroi, A.; Wongtrakul, P.; Manosroi, J.; Sakai, H.; Sugawara, F.; Yuasa, M.; Abe, M. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf., B 2003, 30, 129−138.
Shilakari Asthana, G.; Sharma, P. K.; Asthana, A. Vitro and In Vivo Evaluation of Niosomal Formulation for Controlled Delivery of Clarithromycin. Scientifica 2016, 2016, 6492953.
Khorasani, S.; Danaei, M.; Mozafari, M. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol. 2018, 79, 106−115.
Aparajay, P.; Dev, A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur. J. Pharm. Sci. 2022, 168, 106052.
Kamboj, S.; Saini, V.; Bala, S. Formulation and Characterization of Drug-loaded Nonionic Surfactant Vesicles (Niosomes) for Oral Bioavailability Enhancement. Sci. World J 2014, 2014, 959741.
Muzzalupo, R.; Tavano, L. Niosomal drug delivery for transdermal targeting: recent advances. Drug Deliv. Transl. Res. 2015, 4, 23−33.
Abdelkader, H.; Ismail, S.; Kamal, A.; Alany, R. G. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: physicochemical characterization. Pharmazie 2010, 65, 811−17.
Durak, S.; Esmaeili Rad, M.; Alp Yetisgin, A.; Eda Sutova, H.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal Drug Delivery Systems for Ocular Disease-Recent Advances and Future Prospects. Nanomater. 2020, 10, 1191.
Nasseri, B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int. J. Pharm. 2005, 300, 95−101.
Balakrishnan, P.; Shanmugam, S.; Lee, W. S.; Lee, W. M.; Kim, J. O.; Oh, D. H.; Kim, D.-D.; Kim, J. S.; Yoo, B. K.; Choi, H.-G.; Woo, J. S.; Yong, C. S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 2009, 377, 1−8.
Qiao, X.; Wang, X.; Shang, Y.; Li, Y.; Chen, S.-Z. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun 2018, 38, 43.
Kumar, G. P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug deliveryan overview. Acta Pharm. Sin. B. 2011, 1, 208−219.
Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics 2018, 10, 26.
Shah, H. S.; Gotecha, A.; Jetha, D.; Rajput, A.; Bariya, A.; Panchal, S.; Butani, S. Gamma oryzanol niosomal gel for skin cancer: formulation and optimization using quality by design (QbD) approach. AAPS Open 2021, 7, 9.
Hamed, R.; AbuRezeq, A. a.; Tarawneh, O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488−1497.
Kwak, M.-S.; Ahn, H.-J.; Song, K.-W. Rheological investigation of body cream and body lotion in actual application conditions. Korea- Aust. Rheol. J. 2015, 27, 241−251.
Manosroi, A.; Chankhampan, C.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment. Eur. J. Pharm. Sci. 2013, 48, 474−483.
Kumbhar, D.; Wavikar, P.; Vavia, P. Niosomal gel of lornoxicam for topical delivery: in vitro assessment and pharmacodynamics activity. AAPS PharmSciTech 2013, 14, 1072−1082.
Aslani, A.; Ghannadi, A.; Najafi, H. Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and Coriandrum sativum L. as periodontal drug delivery. Adv. Biomed. Res. 2013, 2, 21−30.
Sato, Y.; Sugihara, Y.; Takahashi, T. Flow and Yield Characteristics of Yield Stress Fluids Using Hysteresis Loop Test Below Slip Yield Point. Appl. Rheol. 2021, 31, 10−23.
Binsi, P.; Shamasundar, B.; Dileep, A.; Badii, F.; Howell, N. Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocoll 2009, 23, 132−145.
Hamed, R.; Farhan, A.; Abu-Huwaij, R.; Mahmoud, N. N.; Kamal, A. Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J. Pharm. Innov. 2019, 1−14.
Hamed, R.; Fiegel, J. Synthetic tracheal mucus with native rheological and surface tension properties. J. Biomed. Mater. Res. A 2014, 102, 1788−1798.
Arafa, M. G.; Ayoub, B. M. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci. Rep. 2017, 7, 1−15.
Chacko, I. A.; Ghate, V. M.; Dsouza, L.; Lewis, S. A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf., B 2020, 195, 111262.
Babaie, S.; Bakhshayesh, A. R. D.; Ha, J. W.; Hamishehkar, H.; Kim, K. H. Invasome: A Novel Nanocarrier for Transdermal Drug Delivery. Nanomaterials 2020, 10, 341−353.
Jain, S.; Jain, V.; Mahajan, S. C. Lipid Based Vesicular Drug Delivery Systems. Adv. Pharm. J. 2015, 2014, 574673.
Khoee, S.; Yaghoobian, M.Nanostructures for drug deli; Elsevier, 2017, pp 207−237. DOI: 10.1016/b978-0-323-46143-6.00006-3
Patel, K. K.; Kumar, P.; Thakkar, H. P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 2012, 13, 1502−1510.
El-Badry, M.; Fetih, G.; Fathalla, D.; Shakeel, F. Transdermal delivery of meloxicam using niosomal hydrogels: in vitro and pharmacodynamic evaluation. Pharm. Dev. Technol. 2015, 20, 820−826.
Wheless, J. W.; Phelps, S. J. A Clinician’s Guide to Oral Extended-Release Drug Delivery Systems in Epilepsy. J Pediatr Pharmacol Ther 2018, 23, 277−292.
Vyas, J.; Vyas, P.; Raval, D.; Paghdar, P. Development of Topical Niosomal Gel of Benzoyl Peroxide. ISRN Nanotechnology 2011, 2011, 503158.
Kumar, K.; Dhawan, N.; Sharma, H.; Vaidya, S.; Vaidya, B.Bioadhesive polymers: novel tool for drug delivery. Artif Cells Nanomed Biotechnol 2014, 42, 274−283.
Zhu, Z.; Zhai, Y.; Zhang, N.; Leng, D.; Ding, P. The development of polycarbophil as a bioadhesive material in pharmacy. Asian J. Pharm. Sci. 2013, 8, 218−227.
G, G.; P, P. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. Future J. Pharm. Sci. 2020, 6,100.
Mokale, V. J.; Patil, H. I.; Patil, A. P.; Shirude, P. R.; Naik, J. B. Formulation and optimisation of famotidine proniosomes: an in vitro and ex vivo study. J. Exp. Nanosci. 2016, 11, 97−110.
Tas, C.; Ozkan, Y.; Okyar, A.; Savaser, A. In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of terpenes as enhancers. Drug Deliv 2007, 14, 453−459.
Jelvehgari, M.; Montazam, H. Evaluation of mechanical and rheological properties of metronidazole gel as local delivery system. Arch. Pharmacal Res. 2011, 34, 931−940.
Li, C.; Liu, C.; Liu, J.; Fang, L. Correlation between rheological properties, in vitro release, and percutaneous permeation of tetrahydropalmatine. AAPS PharmSciTech 2011, 12, 1002−1010.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

