To Investigate the Potential Mechanisms By Which A Combination of Zinc, Fructose, And Pumpkin Seeds Affects Infertility-Related Diseases

Authors

  • Anjali Goswami
  • Sonalika Singh

Keywords:

Male Reproductive Health, Westar Rats, Zinc-Fructose- Pumpkin Seeds, Dose-Dependent Effects, Testicular Histology, Sperm Parameters, Testosterone Levels

Abstract

Infertility, particularly male infertility, is a growing global concern with declining sperm quality being a major contributing factor. The present study evaluated the effects of combined supplementation of zinc, fructose, and pumpkin seeds on reproductive function and systemic health in male Wistar rats. Twenty-four rats were divided into four groups: control, 100 mg/kg, 150 mg/kg, and 200 mg/kg, administered orally for eight weeks. Hematological, biochemical, hormonal, and semen parameters were assessed alongside histopathological examinations of vital organs. Results showed that 100 mg/kg supplementation improved reproductive health with enhanced germ cell development and stable systemic function. The 150 mg/kg group exhibited the most beneficial effects, including optimal hematological and biochemical stability, normal liver and kidney function, high-normal testosterone levels (7.2–7.6 ng/mL), and significantly improved semen parameters (sperm count 100–118 million/mL, motility 76–84%, progressive motility 54–68%, viability 86–92%, morphology 74–85%, semen volume ~2.0 mL). Histological findings confirmed well-preserved tissue integrity across multiple organs with vigorous spermatogenesis. Conversely, the 200 mg/kg group demonstrated peak semen parameters (sperm count 120–122 million/mL, motility 88–92%), but severe systemic toxicity including renal tubular necrosis, testicular degeneration, pancreatic and cardiac damage, and fibrosis in reproductive tissues. Overall, supplementation with zinc, fructose, and pumpkin seeds at moderate levels (100–150 mg/kg) enhanced male fertility, with 150 mg/kg identified as the most effective and safest dose, whereas supraphysiologic dosing (200 mg/kg) caused significant organ toxicity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.

Agarwal A, Virk G, Ong C, du Plessis SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32(1):1–17.

Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function—In sickness and in health. J Androl. 2012;33(6):1096–106.

Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. Clinics (Sao Paulo). 2011;66(4):691–700.

Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod Biomed Online. 2015;30(1):14–27.

Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod Biol Endocrinol. 2013;11(1):66.

Henkel R. The impact of oxidants on sperm function. Andrologia. 2011;43(1):1–11.

Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26(7):1628–40.

Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2014;(12):CD007411.

Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P, et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med. 2016;62(6):387–95.

Ko EY, Sabanegh ES Jr, Agarwal A. Male infertility testing: Reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518–27.

Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: Benefits on semen parameters, advanced sperm function, assisted reproduction and pregnancy outcomes. Arab J Urol. 2018;16(1):113–24.

Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015;8(4):191–6.

Amaral A, Lourenço B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–74.

Paoli D, Lombardo F, Lenzi A, Gandini L. Sperm mitochondrial DNA: a marker of sperm quality. Reprod Biomed Online. 2011;22(3):284–90.

Ruiz-Pesini E, Diez C, Lapeña AC, Pérez-Martos A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 2000;46(4):625–8.

Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

Fallah A, Mohammad-Hasani A, Colagar AH. Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertility. J Reprod Infertil. 2018;19(2):69–81.

Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP. Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil Steril. 2002;77(3):491–8.

Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012;111(9):1198–207.

Darszon A, Beltrán C, Félix R, Nishigaki T, Treviño CL. Ion transport in sperm signaling. Dev Biol. 2006;295(1):1–14.

Martínez-Patiño MDC, Camejo MI, Cárdenas DB, Ruiz-Díaz S, Muci-Mendoza J. Coenzyme Q10 supplementation and its impact on male fertility. Urol J. 2021;18(2):150–7.

Nassan FL, Chavarro JE, Tanrikut C. Diet and men's fertility: does diet affect sperm quality? Fertil Steril. 2018;110(4):570–7.

Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res. 2009;29(2):82–8.

Mann T. The biochemistry of semen and of the male reproductive tract. London: Methuen; 1964.

Hamamah S, Gatti JL. Role of the ionic environment and internal pH on sperm activity. Hum Reprod. 1998;13(suppl_4):20–30.

Gossell-Williams M, Davis A, O’Connor N. Inhibition of testosterone-induced hyperplasia of the prostate of Sprague–Dawley rats by pumpkin seed oil. J Med Food. 2006;9(2):284–6.

Khazaei M, Aslani MR, Mahmoudzadeh F. Effects of pumpkin seed (Cucurbita pepo) on testicular function in rats. Int J Appl Basic Med Res. 2017;7(4):237–41.

Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1-2):66–9.

Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1987;8(6):367–74.

Kao SH, Chao HT, Chen HW, Hwang TI, Liao TL, Wei YH. Increase of oxidative stress in human sperm with lower motility. Fertil Steril. 2008;89(5):1183–90.

Muratori M, Marchiani S, Tamburrino L, Baldi E. Sperm DNA Fragmentation: Mechanisms of Origin, Impact on Reproductive Outcome, and Analysis. Front Genet. 2015;6:40.

Huang C, Li B, Xu K, Liu D, Hu J, Luo Q, et al. Relationship between seminal plasma antioxidants and semen quality in infertile men. Front Physiol. 2019;10:963.

Sharma R, Agarwal A, Kensinger E. Fertility-enhancing antioxidant supplementation: a review of the literature. World J Mens Health. 2019;37(1):76–91.

Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2020;12(12):CD007411.

Banihani SA. Effect of lycopene on the male reproductive system. World J Mens Health. 2019;37(3):298–306.

Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4(2):176–90.

Khan S, Hemalatha R, Kapoor S, Lakshmi PV. Zinc supplementation improves sperm parameters in infertile men: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2020;18(1):36.

Omu AE, Dashti H, Al-Othman S, Oriowo MA, Fernandes S. Treatment of asthenozoospermia with zinc: a histological and biochemical evaluation. Int J Fertil Womens Med. 2008;53(2):85–93.

Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286.

Liu K, Zhao Z, Wang J, Chen M, Wang Y, Zeng Q, et al. Association between zinc levels and oxidative stress markers in semen: a meta-analysis. Biol Trace Elem Res. 2018;183(2):258–67.

Wang L, Song Y, Quan X, Zhang T. Zinc supplementation improves reproductive function in male rats with cadmium-induced infertility. Biol Trace Elem Res. 2016;171(2):308–15.

Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med. 2006;19(1):83–94.

Rodríguez-Gil JE, Miró J. Energy sources for sperm motility in domestic mammals. Anim Reprod Sci. 2012;134(1–2):69–75.

Mortimer D. Sperm function tests and fertility. Int J Androl. 1997;20(Suppl 3):10–13.

Nassar A, Mahony M, Blackmore P, Morshedi M, Ozgün T, Oehninger S. Effect of sperm morphology and motility on fertilization in vitro. Fertil Steril. 1999;71(4):715–717.

Carrell DT, Liu L, Peterson CM, Jones KP, Hatasaka HH, Erickson L, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49(1):49–55.

Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca²⁺ channel of human sperm. Nature. 2011;471(7338):387–91.

Mann T. Fructose content and fructolysis in semen. Practical implications. Andrologia. 1964;9:42–49.

Ford WC. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum Reprod Update. 2006;12(3):269–74.

Henkel R, Maass G, Schuppe HC, Jung A, Schubert J, Schill WB. Molecular aspects of declining sperm motility in older men. Fertil Steril. 2005;84(5):1430–7.

Gibb Z, Lambourne SR, Aitken RJ. The paradoxical relationship between stallion fertility and oxidative stress. Biol Reprod. 2014;91(3):77.

Mostafa T, Anis T, Imam H, El-Nashar A. Seminal plasma biochemical markers in infertile oligoasthenoteratozoospermic men. Int J Androl. 2007;30(6):518–24.

Nkosi CZ, Opoku AR, Terblanche SE. Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of hepatic enzymes in CCl4-induced liver injury in low protein fed rats. Phytother Res. 2005;19(4):341–5.

Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

Cheikh-Rouhou S, Besbes S, Hentati B, Blecker C, Deroanne C, Attia H. Pumpkin (Cucurbita maxima) seed oils: Physicochemical characteristics and lipid composition. Food Sci Technol Int. 2007;13(5):373–82.

Glew RH, Glew RS, Chuang LT, Huang YS, Millson M, Constans D, VanderJagt DJ. Amino acid, mineral and fatty acid content of pumpkin seed (Cucurbita pepo) and cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum Nutr. 2006;61(2):51–6.

Carotenuto M, Messina G, Esposito M, Rippa CD, Precenzano F. The role of nutraceuticals in male fertility. Curr Pharm Des. 2022;28(1):13–21.

Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010;48(5):425–35.

Amelar RD, Dubin L. Evaluation of the infertile male. Fertil Steril. 1970;21(10):806–15.

Laleye LC, et al. Fructose metabolism in sperm energy production. Afr J Biotechnol. 2019;18(6):128–33.

Nkosi CZ, Opoku AR, Terblanche SE. Effect of pumpkin seed (Cucurbita pepo) on testicular function. Phytother Res. 2005;19(12):999–1001.

Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update. 2007;13(2):163–74.

Omu AE, Al-Qattan F, Al-Maghrebi M, et al. Antioxidants in seminal plasma: relationship with sperm parameters and oxidative stress. J Androl. 2008;29(6):570–8.

Hamidia A, Shokrzadeh M, Naghshvar F. Antioxidative effects of vitamins E and C on sperm parameters in lead-exposed rats. Iran J Reprod Med. 2009;7(2):71–6.

Downloads

Published

2025-08-27

How to Cite

1.
Goswami A, Singh S. To Investigate the Potential Mechanisms By Which A Combination of Zinc, Fructose, And Pumpkin Seeds Affects Infertility-Related Diseases. J Neonatal Surg [Internet]. 2025Aug.27 [cited 2025Oct.12];14(32S):7966-80. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/9012