Biosensors in Cancer Research: A New Frontier in Screening, Diagnosis and Treatment Management
DOI:
https://doi.org/10.63682/jns.v14i32S.9161Keywords:
Cancer, Biosensors, AI; BiomarkersAbstract
Cancer is a type of genetic-related disease that some cells become unnormal and form cancer clusters or tumours and it is one of the main causes of death for humans. While qualified treatment and adequate survivorship care in the early stages of cancer can improve survival rates and reduce side effects, most of the early cancer symptoms or signs are not obvious and specific enough to be observed and recognize. Therefore, reliable, cost-effective, and powerful technologies to detect the disease are needed. Cancer biomarkers are substances such as nucleic acids, enzymes, and metabolites, present in cancer clusters, tumours, or serum. While biosensors provide a quick, accurate, sensitive, uncomplicated, and economical method of diagnosing a particular cancer biomarker and is important to cancer detection and treatment, especially early diagnosis. Biosensors could be classified into three types: mass-based, electrochemical, or optical biosensors. With the development of science and technology and continuous research, more biosensors are designed for advanced technology, such as nanotechnology. The new and novel biosensors provide a powerful way for cancer detection. The objective of this research is to discuss the novel biosensors designed in recent years for screening, diagnosis and treatment management of cancers
Downloads
Metrics
References
Quazi S. Application of biosensors in cancers, an overview. Frontiers in Bioengineering and Biotechnology. 2023;24(11): 1193493.
Fitzgerald R C, Antoniou A C, Fruk L, et al. The future of early cancer detection. Nature medicine, 2022, 28(4): 666-677.
Strimbu K, Tavel J A. What are biomarkers. Current Opinion in HIV and AIDS, 2010, 5(6): 463-466.
Gundogdu A, Gazoglu G, Kahraman E, et al. Biosensors: Types, applications, and future advantages. Journal of Scientific Reports-A, 2023 (052): 457-481.
Abati S, Bramati C, Bondi S, et al. Oral cancer and precancer: a narrative review on the relevance of early diagnosis. International journal of environmental research and public health, 2020, 17(24): 9160
Hasan MR, Ahommed MS, Daizy M, Bacchu MS, Ali MR, Al- Mamun MR, Saad Aly MA, Khan MZH, Hossain SI. Recent development inelectrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron: x. 2021;8:100075.
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun. 2023;59(23):3383–3398.
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extra- cellular vesicles. Anal Bioanal Chem. 2023;415(6):1087–1106.
Campuzano S, Barderas R, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Electrochemical biosensing to move forward in cancer epigenetics and metastasis: a review. Analytica (Rome) Acta. 2020;1109:169–190.
Campuzano S, Serafín V, Gamella M, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Opportunities, challenges, and prospects in electrochemical biosensing of circulating tumor DNA and its specific features. Sensors. 2019;19(17):3762.
Ozkan-Ariksoysal D. Current perspectives in graphene oxide-based electrochemical biosensors for cancer diagnostics. Biosensors. 2022;12(8):607.
Volkova L V, Pashov A I, Omelchuk N N. Cervical carcinoma: oncobiology and biomarkers. International journal of molecular sciences, 2021, 22(22): 12571.
Jing L, Xie C, Li Q, Yang M, Li S, Li H, et al. Electrochemical biosensors for the analysis of breast cancer biomarkers: from design to application. Anal Chem 2021; 94(1):269–96.
[17] Manoto S, Abdelsadik A, El-Hussein A. Optical biosensors for cancer diagnosis. Handbook of cancer and immunology. Springer; 2023. p. 1–16.
Harshavardhan S, Rajadas SE, Vijayakumar KK, Durai WA, Ramu A, Mariappan R. Electrochemical immunosensors: working principle, types, scope, applications, and future prospects. Bioelectrochem Interface Eng 2019:343–69.
Wang Q, Ren Z-H, Zhao W-M, Wang L, Yan X, Zhu A-s, et al. Research advances on surface plasmon resonance biosensors. Nanoscale 2022;14(3):564–91.
Hossain MB, Islam MM, Abdulrazak LF, Rana MM, Akib TBA, Hassan M. Graphenecoated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors 2020;10(1):67–79.
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, et al. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: a comprehensive review. Anal Biochem 2020;610:113996
Mittal S, Saharia A, Ismail Y, et al. Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection. Photonics. MDPI, 2023, 10(3): 230.
Mostufa S, Akib T B A, Rana M M, et al. Highly sensitive TiO2/Au/graphene layer-based surface plasmon resonance biosensor for cancer detection. Biosensors, 2022, 12(8): 603.
Moisoiu V, Socaciu A, Stefancu A, et al. Breast cancer diagnosis by surface-enhanced Raman scattering (SERS) of urine. Applied Sciences, 2019, 9(4): 806.
Avci E, Yilmaz H, Sahiner N, et al. Label-free surface enhanced raman spectroscopy for cancer detection. Cancers, 2022, 14(20): 5021.
Anzar N, Hasan M R, Akram M, et al. Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process biochemistry, 2020, 94: 126-135.
Hasan M R, Sharma P, Pilloton R, et al. Colorimetric biosensor for the naked-eye detection of ovarian cancer biomarker PDGF using citrate modified gold nanoparticles. Biosensors and Bioelectronics: X, 2022, 11: 100142.
Miao X, Zhu Z, Jia H, et al. Colorimetric detection of cancer biomarker based on enzyme enrichment and pH sensing. Sensors and Actuators B: Chemical, 2020, 320: 128435.
Muñoz-San Martín C, Pedrero M, Gamella M, et al. A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Analytical and Bioanalytical Chemistry, 2020, 412: 6177-6188.
Zhang X, Yu Y, Shen J, et al. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta, 2020, 212: 120794.
Benson 3rd A B, Abrams T A, Ben-Josef E, et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. Journal of the National Comprehensive Cancer Network: JNCCN, 2009, 7(4): 350-391.
Zhou L, Ji F, Zhang T, et al. A fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta, 2019, 197: 444-450.
Xu S, Dong B, Zhou D, et al. based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Scientific Reports, 2016, 6(1): 23406.
Dezhakam E, Khalilzadeh B, Mahdipour M, Isildak I, Yousefi H, Ahmadi M, Naseri A, Rahbarghazi R. Electrochemical biosensors in exosome analysis; a short journey to the present and future trends in early-stage evaluation of cancers. Biosens And Bioelectron. 2023;222:114980.
Mohammadpour-Haratbar A, Boraei SBA, Zare Y, Rhee KY, Park S-J. Graphene-based electrochemical biosensors for breast cancer detection. Biosensors. 2023;13(1):80.
Sanko V, Kuralay F. Label-free electrochemical biosensor plat- forms for cancer diagnosis: recent achievements and challenges. Biosensors. 2023;13(3):333.
Van Der Pol Y, Mouliere F. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA. Cancer Cell. 2019;36(4):350–368.
Soda N, Gonzaga ZJ, Chen S, Koo KM, Nguyen N-T, Shiddiky MJA, Rehm BHA. Bioengineered polymer nanobeads for isolation and electrochemical detection of cancer biomarkers. ACS Appl Mater Interface. 2021;13(27):31418–31430.
Kappen J, Skorupa M, Krukiewicz K. Conducting polymers as versatile tools for the electrochemical detection of cancer biomarkers. Biosensors. 2022;13(1):31.
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21(1):56.
Chen X, Gole J, Gore A, He Q, Lu M, Min J, Yuan Z, Yang X, Jiang Y, Zhang T, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat Commun. 2020;11(1):3475.
Sadighbayan D, Sadighbayan K, Tohid-Kia MR, Khosroushahi AY, Hasanzadeh M. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: recent progress. TrAC Trends In Analytical Chem. 2019;118:73–88.
Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, Saboury AA, Falahati M. Cancer diagnosis using nano- materials based electrochemical nanobiosensors. Biosens And Bioelectron. 2019;126:773–784.
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors. 2021;11(9):336.
Lacasa E, Cotillas S, Saez C, Lobato J, Cañizares P, Rodrigo MA. Environmental applications of electrochemical technology. What is needed to enable full-scale applications? Curr Opin In Electrochemistry. 2019;16:149–156. doi:10.1016/j. coelec.2019.07.002.
Jensen E, Kristensen JK, Bjerglund RT, Johnsen SP, Thomsen JL. The pathway and characteristics of patients with non-specific symptoms of cancer: a systematic review. BMC Cancer. 2022;22:574.
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–930.
Cao Y, Dhahad HA, El-Shorbagy MA, Alijani HQ, Zakeri M, Heydari A, Bahonar E, Slouf M, Khatami M, Naderifar M, et al. Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Sci Rep. 2021;11(1):23479.
Syam R, Davis KJPratheesh MD, Anoopraj R, Joseph BS. Biosensors: a novel approach for pathogen detection. Vet Scan| Online Vet Med J. 2012;7(1):102–102.
Damborský P, Švitel J, Katrlík J, Estrela P. Optical biosensors. Essays In Biochem. 2016;60(1):91–100.
Kumar DRS, Rao P. A comprehensive assessment on nano bio- sensor to sense cancer cells. Microsyst Technol. 2017;23 (4):821–827. doi:10.1007/s00542-016-3173-z.
Yang L, Huang X, Sun L, Xu L. A piezoelectric immunosensor for the rapid detection of p16INK4a expression in liquid-based cervi- cal cytology specimens. Sensors Actuators B: chem. 2016;224:863–867.
Griffin S. Biosensors for cancer detection applications. Mo S&T’s Peer To Peer. 2017;1(2):6.
Khan MA, Mujahid M. Recent advances in electrochemical and optical biosensors designed for detection of Interleukin 6. Sensors. 2020;20(3):646.
Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100.
Kurbanoglu S, et al. Chemical nanosensors in pharmaceutical analysis. In: New developments in nanosensors for pharmaceutical analysis. Amsterdam: Elsevier; 2019. p. 141–70.
Qian L, Li Q, Baryeh K, Qiu W, Li K, Zhang J, Yu Q, Xu D, Liu W, Brand RE, Zhang X. Biosensors for early diagnosis of pancreatic cancer: a review. Trans Res. 2019;213:67–89.
Chang J, Wang X, Wang J, Li H, Li F. Nucleic acid-functionalized metal-organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem. 2019;91:3604–10.
Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens Bioelectron. 2019;142:111486.
Zhang X, Yu Y, Shen J, Qi W, Wang H. Design of organic/inorganic nanocomposites for ultrasensitive electrochemical detection of a cancer biomarker protein. Talanta. 2020;212:120794.
Khanmohammadi A, Aghaie A, Vahedi E, Qazvini A, Ghanei M, Afkhami A, Hajian A, Bagheri H. Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta. 2020;206:120251.
Mansor NA, Zain ZM, Hamzah HH, Noorden MSA, Jaapar SS, Beni V, Ibupoto ZH. Detection of breast cancer 1 (BRCA1) gene using an electrochemical DNA biosensor based on immobilized ZnO nanowires. OJAB. 2014;3(2):9.
Kilic T, Erdem A, Ozsoz M, Carrara S. microRNA biosensors: opportunities and challenges among conventional and commer- cially available techniques. Biosens And Bioelectron. 2018;99:525–546. doi:10.1016/j.bios.2017.08.007.
Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens And Bioelectron. 2009;24(8):2504–2508.
Shan W, Pan Y, Fang H, Guo M, Nie Z, Huang Y, Yao S. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta. 2014;126:130–135.
Formisano N, Jolly P, Bhalla N, Cromhout M, Flanagan SP, Fogel R, Limson JL, Estrela P. Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors And Actuators B: chem. 2015;220:369–375.
Valarmathi T, Premkumar R, Benial AMF. Spectroscopic and molecular docking studies on 1-hydroxyanthraquinone: a potent ovarian cancer drug. J Mol Struct. 2020;1213:128163.
Lu X, Cui M, Yi Q, Kamrani A. Detection of mutant genes with different types of biosensor methods. TrAC Trends In Analytical Chem. 2020;126:115860.
Clausen TM, Pereira MA, Oo HZ, Resende M, Gustavson T, Mao Y, Sugiura N, Liew J, Fazli L, Theander TG, et al. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of bio- marker targeting. Sens Bio-Sens Res. 2016;9:23–30.
Dey D, Goswami T, Doetsch PW. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. Biomed Res Int. 2011;2011(1):2011. doi:10.1155/2011/348218.
Suutari T, Silen T, S˛en Karaman D, Saari H, Desai D, Kerkelä E, Laitinen S, Hanzlikova M, Rosenholm JM, Yliperttula M, et al. Real‐Time Label‐Free monitoring of nanoparticle cell uptake. Small. 2016;12(45):6289–6300.
Balwir S, Sahare M, Raghuwanshi A, Angarwar S, Fulzele R. Design of cantilever based biosensor for bone cancer detection. IJRET. 2016;5(22):22–25. doi:10.15623/ijret.2016.0522007.
Sankiewicz A, Romanowicz L, Laudanski P, Zelazowska- Rutkowska B, Puzan B, Cylwik B, Gorodkiewicz E. SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material. Anal Bioanal Chem. 2016;408 (19):5269–5276.
Senkara-Barwijuk E, Kobiela T, Lebed K, Lekka M. Reaction path- way and free energy profile determined for specific recognition of oligosaccharide moiety of carboxypeptidase Y. Biosens And Bioelectron. 2012;36(1):103–109. doi:10.1016/j.bios.2012.04.014
Duffy MJ, Sturgeon CM, Sölétormos G, Barak V, Molina R, Hayes DF, Diamandis EP, Bossuyt PMM. Validation of new cancer biomarkers: a position statement from the European group on tumor markers. Clin Chem. 2015;61(6):809–820.
Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev. 2011;40(5):2673–2703.
Peng C-W, Li Y, Peng H. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater. 2010;2010(1):1–6.
Guk K, Han G, Lim J, Jeong K, Kang T, Lim E-K, Jung J. Evolution of wearable devices with real-time disease monitoring for perso- nalized healthcare. Nanomaterials. 2019;9(6):813. doi:10.3390/ nano9060813.
Sivani T, Mishra S. Wearable devices: evolution and usage in remote patient monitoring system. In: Connected e-health: inte- grated IoT and cloud computing. Cham: Springer International Publishing; 2022. p. 311–332.
Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors-sensor principles and architectures. Sensors. 2008;8 (3):1400–1458.
Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: a review. Analytica (Rome) Acta. 2019;1082:1–17. doi:10.1016/j. aca.2019.07.054.
Vajhadin F, Ahadian S, Travas-Sejdic J, Lee J, Mazloum-Ardakani M, Salvador J, Aninwene GE, Bandaru P, Sun W, Khademhossieni A. Electrochemical cytosensors for detection of breast cancer cells. Biosens And Bioelectron. 2020;151:111984. doi:10.1016/j.bios.2019.111984.
Mejia-Salazar JR, Rodrigues Cruz K, Materon Vasques EM, Novais de Oliveira O. Microfluidic point-of-care devices: new trends and future prospects for ehealth diagnostics. Sensors. 2020;20(7):1951.
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic systems for cancer diagnosis and applications. Micromachines. 2021;12(11):1349.
Ali J, Najeeb J, Asim Ali M, Farhan Aslam M, Raza A. Biosensors: their fundamentals, designs, types and most recent impactful applications: a review. J Biosens Bioelectron. 2017;8(1):1–9.
Alhadrami HA. Biosensors: classifications, medical applications, and future prospective. Biotech App Biochem. 2018;65 (3):497–508. doi:10.1002/bab.1621.
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett. 2021;16:173.
Preethi KA, Lakshmanan G, Sekar D. Antagomir technology in the treatment of different types of cancer. Epigenomics. 2021;13 (7):481–484.
He W, Yuan S, Zhong W-H, Siddikee MA, Dai C-C. Application of genetically engineered microbial whole-cell biosensors for com- bined chemosensing. Appl Microbiol Biotechnol. 2016;100 (3):1109–1119.
Hassan SH, Van Ginkel SW, Hussein MAM, Abskharon R, Oh S-E. Toxicity assessment using different bioassays and micro- bial biosensors. Environ Int. 2016;92-93:106–118.
Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics. 2020;10(5):2309.
Lazcka O, Del Campo FJ, Munoz FX. Pathogen detection: a perspective of traditional methods and biosensors. Biosens And Bioelectron. 2007;22(7):1205–1217. doi:10.1016/j.bios. 2006.06.036.
Mei Y, He C, Zeng W, Luo Y, Liu C, Yang M, Kuang Y, Lin X, Huang Q. Electrochemical biosensors for foodborne pathogens detection based on carbon nanomaterials: recent advances and challenges. Food Bioprocess Technol. 2022;15(3):498–513.
Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1109.
Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza KK, Dey S, Howard CB, Sina AAI, Trau M. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst. 2019;144(23):6914–6921.
Mummareddy S, Pradhan S, Narasimhan A, Natarajan A. On demand biosensors for early diagnosis of cancer and immune checkpoints blockade therapy monitoring from liquid biopsy. Biosensors. 2021;11(12):500.
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical biosen- sors for cytokine profiling: recent advancements and possibilities in the near future. Biosensors. 2021;11(3):94.
Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28(7):1402–1419.
Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev. 2017;46 (22):6816–6854.
Li W, Song Q, Li M, Yuan Y, Zhang J, Wang N, Yang Z, Huang J, Lu J, Li X. Chemical heterointerface engineering on hybrid elec- trode materials for electrochemical energy storage. Small Methods. 2021;5(8):2100444.
De La Franier B, Thompson M. Early stage detection and screening of ovarian cancer: a research opportunity and significant challenge for biosensor technology. Biosens And Bioelectron. 2019;135:71–81.
Selvaraj M, Sreeja B. Ultra-sensitive graphene micro-ribbon integrated THz biosensor for breast cancer cell detection. Methods 2025.
Haleem A, Javaid M, Singh RP, Suman R, Rab S. Biosensors applications in medical field: a brief review. Sens Int 2021;2:100100.
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer. 2021;21(10):655–68.
Rasheed S, Kanwal T, Ahmad N, Fatima B, Najam-ul-Haq M, Hussain D. Advances and challenges in portable optical biosensors for onsite detection and point-of-care diagnostics. TrAC, Trends Anal Chem 2024:117640.
Flynn CD, Chang D. Artificial intelligence in point-of-care biosensing: challenges and opportunities. Diagnostics 2024;14(11):1100.
Dave S, Dave A, Radhakrishnan S, Das J, Dave S. Biosensors for healthcare: an artificial intelligence approach. Biosensors Emerg Re-emerging Infect Dis 2022: 365–83.
Sweeney SM, Hamadeh HK, Abrams N, Adam SJ, Brenner S, Connors DE, et al. Case studies for overcoming challenges in using big data in cancer. Cancer Res 2023;83 (8):1183–90.
Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer 2022;22(2):114–26.
Dias FM, Martens ML, de Paula Monken SF, da Silva LF, Santibanez-Gonzalez EDR. Risk management focusing on the best practices of data security systems for healthcare. Int J Innovat 2021;9(1):45–78.
Wu L, Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev. 2015;44(10):2963–2997.
Jayanthi VSPKS, Das AB, Saxena U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens And Bioelectron. 2017;91:15–23.
Amethiya Y , Pipariya P , Patel S , Shah M. Comparative analysis of breast cancer detection using machine learning and biosensors. Intelligent Medicine, 2022; 2: 69–81
Sahran S. Machine learning methods for breast cancer diagnostic. Breast Cancer Surg Intech Open 2018.
Kamoun EA, Elsabahy M, Elbadry AMM, Abdelazim EB, Mohsen AA, Aleem MA, Gao H, Eissa GN, Elghamry I and Salim SA.Recent Progress of Polymer-Based Biosensors for Cancer Diagnostic Applications: Natural versus Synthetic Polymers. ACS Omega, 2025; 10: 8816−8831
Tiwari A, Mishra S and Kuo TR. Current AI technologies in cancer diagnostics and treatment.. Molecular Cancer, 2025; 24:159
Lu J, Lu X, Wang Y, Zhang H, Han L, Zhu B, et al. Comparison between logistic regression and machine learning algorithms on prediction of noise-induced hearing loss and investigation of SNP loci. Sci Rep. 2025;15:15361.
Shiri FM, Perumal T, Mustapha N, Mohamed R. A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM. GRU JAI. 2024;6:301–60.
Jordan ID, Sokol PA, Park IM. Gated recurrent units viewed through the lens of continuous time dynamical systems. Front Comput Neurosci. 2021;15: 678158.
Schmidt RM. Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. arXiv; 2019. Available from: http://arxiv.org/abs/1912. 05911. Cited 2025 May 24.
Mohammed SA, Darrab S, Noaman SA, et al. Analysis of breast cancer detection using different machine learning techniques. Comm Comp Inform Sci, 2020;1234:108–17.
Asri H, Mousannif H, Al Moatassim H, et al. A hybrid data mining classifier for breast cancer prediction. Adv Intel Sys Comp 2020;1103:9–16.
Sadhukhan S, Upadhyay N, Chakraborty P. Breast cancer diagnosis using image processing and machine learning. Adv Intel Sys Comp, 2020;937:113–27.
Wang X, Zhao J, Marostica E, Yuan W, Jin J, Zhang J, et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature. 2024;634:970–8.
McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89–94.
Ma Y, Jamdade S, Konduri L, Sailem H. AI in Histopathology Explorer for comprehensive analysis of the evolving AI landscape in histopathology. npj Digital Medicine. 2025;8:156.
Lokhande A. Prov-GigaPath: A Game Changer For Digital Pathology. Syntec Optics. 2024. Available from: https://syntecoptics.com/prov- gigapath-game-changer-digital-pathology/. Cited 2025 Mar 31.
Jiang LY, Liu XC, Nejatian NP, Nasir-Moin M, Wang D, Abidin A, et al. Health system-scale language models are all-purpose prediction engines. Nature. 2023;619:357–62.
Potts B. GigaPath, a whole-slide vision transformer for digital pathology. Microsoft Research. 2024. Available from: https://www.microsoft.com/en-us/research/blog/gigapath-whole slide foundation-model-for-digital-pathology/. Cited 2025 Mar 31.
Klau JH, Maj C, Klinkhammer H, Krawitz PM, Mayr A, Hillmer AM, et al. AIbased multi-PRS models outperform classical single-PRS models. Front Genet. 2023;14. Available from: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2023.1217860/full. Cited 2025 Apr 5.
Ovchinnikova K, Born J, Chouvardas P, Rapsomaniki M, Kruithof-de Julio M. Overcoming limitations in current measures of drug response may enable AI-driven precision oncology. npj Precis Onc. 2024;8:1–7.
Althobiti M , Nhung TTT, Verma S, Albugami RR, Kumar R. Artificial intelligence and biosensors: Transforming cancer diagnostics.Medicine in Novel Technology and Devices, 2025; 27: 100378
Kumar S, Mohan A, Sharma NR, Kumar A, Girdhar M, Malik T, et al. Computational frontiers in aptamer-based nanomedicine for precision therapeutics: a comprehensive review. ACS Omega 2024;9(25):26838–62.
Son A, Park J, Kim W, Yoon Y, Lee S, Park Y, et al. Revolutionizing molecular design for innovative therapeutic applications through artificial intelligence. Molecules 2024;29(19):4626.
Gond D, Dorfler V. AI in medical diagnosis: AI prediction & human judgment. Artif Intell Med 2024;149:102769.
Rebelo TS, Ribeiro JA, Sales MGF, Pereira CM. Electrochemical immunosensor for detection of CA 15-3 biomarker in point-of-care. Sens Biosens Res 2021;33:100445.
Siavashy S, Soltani M, Rahimi S, Hosseinali M, Guilandokht Z, Raahemifar K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: applications and techniques. Biosens Bioelectron X 2024;19:100489.
Guo Q-r, Zhang L-l, Liu J-f, Li Z, Li J-j, Zhou W-m, et al. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021;5(1): 73.
Sun Z, Tong Y, Zhao L, Li J, Gao F, Wang C, et al. MoS2@ Ti3C2 nanohybrid-based photoelectrochemical biosensor: a platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 2022;238:123077.
Ranjan R, Esimbekova EN, Kratasyuk VA. Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 2017;87:918–30.
Manoto S, Abdelsadik A, El-Hussein A. Optical biosensors for cancer diagnosis. Handbook of cancer and immunology. Springer; 2023. p. 1–16.
Harshavardhan S, Rajadas SE, Vijayakumar KK, Durai WA, Ramu A, Mariappan R. Electrochemical immunosensors: working principle, types, scope, applications, and future prospects. Bioelectrochem Interface Eng 2019:343–69.
Wang Q, Ren Z-H, Zhao W-M, Wang L, Yan X, Zhu A-s, et al. Research advances on surface plasmon resonance biosensors. Nanoscale 2022;14(3):564–91.
Hossain MB, Islam MM, Abdulrazak LF, Rana MM, Akib TBA, Hassan M. Graphenecoated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors 2020;10(1):67–79.
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, et al. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: a comprehensive review. Anal Biochem 2020;610:113996.
Thirugnanasambandan T, Ramanathan S, Gopinath SC. Revolutionizing biosensing through cutting-edge nanomaterials: an in-depth exploration of recent technological advances. Nano-Struct Nano-Objects 2024;38:101128.
Völlmecke, K.; Afroz, R.; Bierbach, S.; Brenker, L. J.; Frücht, S.; Glass, A.; Giebelhaus, R.; Hoppe, A.; Kanemaru, K.; Lazarek, M.; et al. Hydrogel-Based Biosensors. Gels (Basel, Switzerland) 2022, 8 (12), 768.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.