Modulation Renal Expression of mTOR Gene via Calcitriol on RIRI in Rats
DOI:
https://doi.org/10.52783/jns.v14.1782Keywords:
Calcitriol, RIRI, Bcl-2, BAX, mTOR.Abstract
Background: It seems that IRI is primary factor causing morbidity and death in a number of conditions; including sepsis, MI, and AKI. The microvascular system undergoes structural and functional alterations as a result of ischaemia. Additionally, endothelial layer of capillaries produces ROS in response to the fast reperfusion of ischaemic tissues by blood, which exacerbates the NFκB pathway and inflammatory process. Several inflammatory components such as IL-1β, and TNF-α are released.
Objective: This research is done to examine the effectiveness of Calcitriol in attenuating renal injury during IR through modulation mTOR gene.
Method: 28 Wister Albino rats were randomly assigned to four equal groups, (N=7):
Sham: Rats undergone laparotomy without ischemia.
Control: Rats undergone laparotomy with bilateral RIRI for 30-minute following two hours of reperfusion.
Vehicle: Rats given an intraperitoneal injection of DMSO three days before induction of RIRI.
Calcitriol: Rats received an intraperitoneal injection of Calcitriol three days prior to RIRI.
Results: TNFα, IL-1β, F2 Isoprostane, BAX, and KIM-1 tissue levels in sham were significantly lower than in vehicle and control. Additionally, the findings showed that compared to the vehicle and control, the Calcitriol had significantly decreased levels of KIM-1, TNFα, IL-1β, F2 Isoprostane, and BAX. It also showed that tissue content of Bcl2 and mTOR was significantly greater in Calcitriol compared to vehicle and control. The histopathology showed that Calcitriol could significantly lessen kidney damage in contrast to vehicle and control.
Conclusion: This work concluded that Calcitriol significantly reduced RIRI damage in rats due to their pleiotropic effects.
Downloads
Metrics
References
Adams, J. S., & Hewison, M. (2008). Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nature clinical practice. Endocrinology & metabolism, 4(2), 80–90. https://doi.org/10.1038/ncpendmet0716
Ahmed M. Abdul Hameed, Murooj L. Altemimi, Rihab H. Al-Mudhafar, Dhefaf H. Al-Mudhafar, Najah R. Hadi., 2021. The Anti-Apoptotic, Anti-Inflammatory and Anti-Oxidant Effects Of Olmesartan On Renal I/R Injury in Male Rat Model. Systematic Reviews in Pharmacy, 12 (1), 411-425. doi:10.31838/srp.2021.1.62
Alaasam, E. R., Janabi, A. M., Al-Buthabhak, K. M., Almudhafar, R. H., Hadi, N. R., Alexiou, A., Papadakis, M., Fetoh, M. E. A., Fouad, D., & Batiha, G. E., 2024. Nephroprotective role of resveratrol in renal ischemia-reperfusion injury: a preclinical study in Sprague-Dawley rats. BMC Pharmacology and Toxicology, 25(1). https://doi.org/10.1186/s40360-024-00809-8.
Al-Zubaidy, H. F. S., Majeed, S. R., & Al-Koofee, D. a. F., 2022. Evaluation of Bax and BCL 2 Genes Polymorphisms in Iraqi Women with Breast Cancer. DOAJ (DOAJ: Directory of Open Access Journals), 77(2), 799–808. https://doi.org/10.22092/ari.2022.357090.1968.
Anders H. J. (2016). Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease. Journal of the American Society of Nephrology : JASN, 27(9), 2564–2575. https://doi.org/10.1681/ASN.2016020177
Bouillon, R., Marcocci, C., Carmeliet, G., Bikle, D., White, J. H., Dawson-Hughes, B., Lips, P., Munns, C. F., Lazaretti-Castro, M., Giustina, A., & Bilezikian, J. (2019). Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine reviews, 40(4), 1109–1151. https://doi.org/10.1210/er.2018-00126
Brilland, B., Boud’hors, C., Wacrenier, S., Blanchard, S., Cayon, J., Blanchet, O., Piccoli, G.B., Henry, N., Djema, A., Coindre, J.-P., Jeannin, P., Delneste, Y., Copin, M.-C., Augusto, J.-F., 2023. Kidney injury molecule 1 (KIM-1): a potential biomarker of acute kidney injury and tubulointerstitial injury in patients with ANCA-glomerulonephritis. Clinical Kidney Journal 16, 1521–1533. https://doi.org/10.1093/ckj/sfad071.
Bussmann, A. R., Marton Filho, M. A., Módolo, M. P., Módolo, R. P., Amado, P., Domingues, M. A., Castiglia, Y. M., & Módolo, N. S., 2014. Effect of allopurinol on the kidney function, histology and injury biomarker (NGAL, IL 18) levels in uninephrectomised rats subjected to ischaemia-reperfusion injury. Acta cirurgica brasileira, 29(8), 515–521. https://doi.org/10.1590/s0102-86502014000800006
Chen, W., Xi, X., Zhang, S., Zou, C., Kuang, R., Ye, Z., Huang, Y., & Hu, H., 2018. Pioglitazone Protects Against Renal Ischemia-Reperfusion Injury via the AMP-Activated Protein Kinase-Regulated Autophagy Pathway. Frontiers in pharmacology, 9, 851. https://doi.org/10.3389/fphar.2018.00851
Christakos, S., Ajibade, D. V., Dhawan, P., Fechner, A. J., & Mady, L. J. (2010). Vitamin D: metabolism. Endocrinology and metabolism clinics of North America, 39(2), 243–253. https://doi.org/10.1016/j.ecl.2010.02.002
Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews. Molecular cell biology, 15(1), 49–63. https://doi.org/10.1038/nrm3722
De Oliveira THC, Souza DG, Teixeira MM, and Amaral FA. (2019). Tissue Dependent Role of PTX3 During Ischemia-Reperfusion Injury. Front Immunol. 10:1461. doi:10.3389/fimmu.2019.01461.
Delbridge, A. R., Grabow, S., Strasser, A., & Vaux, D. L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature reviews. Cancer, 16(2), 99–109. https://doi.org/10.1038/nrc.2015.17
Deluque, A.L., De Almeida, L.F., Francescato, H.D.C., Da Silva, C.G.A., Costa, R.S., Antunes-Rodrigues, J., Coimbra, T.M., (2020). Effect of Calcitriol on the Renal Microvasculature Differentiation Disturbances Induced by AT1 Blockade During Nephrogenesis in Rats. Frontiers in Medicine 7. https://doi.org/10.3389/fmed.2020.00023.
Docherty, N. G., O'Sullivan, O. E., Healy, D. A., Fitzpatrick, J. M., & Watson, R. W. (2006). Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. American journal of physiology. Renal physiology, 290(1), F4–F13. https://doi.org/10.1152/ajprenal.00045.2005
Dusso, A. S., Brown, A. J., & Slatopolsky, E. (2005). Vitamin D. American journal of physiology. Renal physiology, 289(1), F8–F28. https://doi.org/10.1152/ajprenal.00336.2004
El-Sahar, A.E., Bekhit, N., Eissa, N.M., Abdelsalam, R.M., Essam, R.M., 2023. Targeting HMGB1/PI3K/Akt and NF-κB/Nrf-2 signaling pathways by vildagliptin mitigates testosterone-induced benign prostate hyperplasia in rats. Life Sciences 322, 121645. https://doi.org/10.1016/j.lfs.2023.121645.
Fu, J., Xue, R., Gu, J., Xiao, Y., Zhong, H., Pan, X., & Ran, R. (2013). Neuroprotective effect of calcitriol on ischemic/reperfusion injury through the NR3A/CREB pathways in the rat hippocampus. Molecular Medicine Reports, 8(6), 1708–1714. https://doi.org/10.3892/mmr.2013.1734
Garlanda, C., Dinarello, C. A., & Mantovani, A. (2013). The interleukin-1 family: back to the future. Immunity, 39(6), 1003–1018. https://doi.org/10.1016/j.immuni.2013.11.010
Ghazi, A., Abood, S. H., Alaqouli, H., Hadi, N. R., Majeedand, S. A., & Janabi, A. M., (2019). Ibudilast and octreotide can ameliorate acute pancreatitis via downregulation of the inflammatory cytokines and Nuclear Factor- Kappa B expression. Annals of Tropical Medicine and Public Health, 22(04), 01–07. https://doi.org/10.36295/ASRO.2019.22041.
Giovannini, L., Migliori, M., Longoni, B. M., Das, D. K., Bertelli, A. A., Panichi, V., Filippi, C., & Bertelli, A. (2001). Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. Journal of cardiovascular pharmacology, 37(3), 262–270. https://doi.org/10.1097/00005344-200103000-00004
Gomes, J. A., Milne, G., Kallianpur, A., & Shriver, L. (2022). Isofurans and Isoprostanes as Potential Markers of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage: A Prospective Observational Study. Neurocritical care, 36(1), 202–207. https://doi.org/10.1007/s12028-021-01285-2
Hadi, N. R., Al-Amran, F. G., Abbas, M. K., Ali Hussein, Y., Al-Yasiri, I. K., & Kartikey, K., 2017. The cardioprotective potential of bosentan in myocardial ischemia reperfusion injury. World Heart J, 9(2), 155-63.
Han, W. K., Bailly, V., Abichandani, R., Thadhani, R., & Bonventre, J. V. (2002). Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney international, 62(1), 237–244. https://doi.org/10.1046/j.1523-1755.2002.00433.x
Holick M. F. (2007). Vitamin D deficiency. The New England journal of medicine, 357(3), 266–281. https://doi.org/10.1056/NEJMra070553
Hotchkiss, R. S., Strasser, A., McDunn, J. E., & Swanson, P. E. (2009). Cell death. The New England journal of medicine, 361(16), 1570–1583. https://doi.org/10.1056/NEJMra0901217
Huang, J. and Tindall, D.J. (2007). Dynamic FoxO transcription factors. Journal of Cell Science, 120(15), pp.2479-2487. https://doi.org/10.1242/jcs.001222
Huo, A. and Tian, Z., (2023). Calcitriol Alleviates AKI Via Inhibiting Intestinal Inflammation and Restoring Intestinal Microbiota. https://doi.org/10.21203/rs.3.rs-1824310/v5
Huo, A., FengmeiWang, Xia, J., & Wang, H. (2022). The role and mechanism of calcitriol in promoting intestinal injury in aki by improving the intestinal barrier. https://doi.org/10.21203/rs.3.rs-1824310/v1.
Islam, M. S., Ciavattini, A., Petraglia, F., Castellucci, M., & Ciarmela, P. (2018). Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Human reproduction update, 24(1), 59–85. https://doi.org/10.1093/humupd/dmx032
Jallawee, H. Q. and Janabi, A. M. (2024) “Potential nephroprotective effect of dapagliflozin against renal ischemia reperfusion injury in rats via activation of autophagy pathway and inhibition of inflammation, oxidative stress and apoptosis”, South Eastern European Journal of Public Health, pp. 488–500. doi: 10.70135/seejph.vi.1009.
Jaya D, Manvendra S, Swapnil S and sharad S., 2017. Antioxidant and Nephroprotective Potential of Aegle marmelos Leaves Extract, Journal of Herbs, Spices & Medicinal Plants. 23(4):363-377. doi: 10.1080/10496475.2017.1345029
Jiang, G., Liu, X., Wang, M., Chen, H., Chen, Z., & Qiu, T. (2015). Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta cirurgica brasileira, 30(6), 422–429. https://doi.org/10.1590/S0102-865020150060000008
Kadiiska, M. B., Gladen, B. C., Baird, D. D., Germolec, D., Graham, L. B., Parker, C. E., Nyska, A., Wachsman, J. T., Ames, B. N., Basu, S., Brot, N., Fitzgerald, G. A., Floyd, R. A., George, M., Heinecke, J. W., Hatch, G. E., Hensley, K., Lawson, J. A., Marnett, L. J., … Barrett, J. C. 2005. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology & Medicine, 38(6), 698–710. https://doi.org/10.1016/j.freeradbiomed.2004.09.017
Kanagasundaram, N. S. (2015). Pathophysiology of ischaemic acute kidney injury. Annals of Clinical Biochemistry, 52(2), 193–205. https://doi.org/10.1177/0004563214556820
Kezić, A., Stajic, N., & Thaiss, F. (2017). Innate Immune Response in Kidney Ischemia/Reperfusion Injury: Potential Target for Therapy. Journal of immunology research, 2017, 6305439. https://doi.org/10.1155/2017/6305439
Kimura, T., Takabatake, Y., Takahashi, A., Kaimori, J. Y., Matsui, I., Namba, T., Kitamura, H., Niimura, F., Matsusaka, T., Soga, T., Rakugi, H., & Isaka, Y. (2011). Autophagy protects the proximal tubule from degeneration and acute ischemic injury. Journal of the American Society of Nephrology : JASN, 22(5), 902–913. https://doi.org/10.1681/ASN.2010070705
Konstantinidis, K., Whelan, R. S., & Kitsis, R. N. (2012). Mechanisms of cell death in heart disease. Arteriosclerosis, thrombosis, and vascular biology, 32(7), 1552–1562. https://doi.org/10.1161/ATVBAHA.111.224915
Korkmaz, A., & Kolankaya, D. (2010). Protective effect of rutin on the ischemia/reperfusion induced damage in rat kidney. The Journal of surgical research, 164(2), 309–315. https://doi.org/10.1016/j.jss.2009.03.022
Kunst, S., Wolloscheck, T., Hölter, P., Wengert, A., Grether, M., Sticht, C., Weyer, V., Wolfrum, U., Spessert, R., 2013. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility. Journal of Neurochemistry 124, 757–769. https://doi.org/10.1111/jnc.12089.
Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293. https://doi.org/10.1016/j.cell.2012.03.017
Leaf, I. A., Nakagawa, S., Johnson, B. G., Cha, J. J., Mittelsteadt, K., Guckian, K. M., Gomez, I. G., Altemeier, W. A., & Duffield, J. S. (2017). Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. The Journal of clinical investigation, 127(1), 321–334. https://doi.org/10.1172/JCI87532
Liu, N., He, S., Ma, L., Ponnusamy, M., Tang, J., Tolbert, E., Bayliss, G., Zhao, T. C., Yan, H., & Zhuang, S. (2013). Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PloS one, 8(1), e54001. https://doi.org/10.1371/journal.pone.0054001
Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 104(4), 487–501. https://doi.org/10.1016/s0092-8674(01)00237-9
Luciani, D. S., White, S. A., Widenmaier, S. B., Saran, V. V., Taghizadeh, F., Hu, X., Allard, M. F., & Johnson, J. D. (2013). Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic β-cells. Diabetes, 62(1), 170–182. https://doi.org/10.2337/db11-1464
Malek, M., & Nematbakhsh, M., 2015. Renal ischemia/reperfusion injury; from pathophysiology to treatment. Journal of Renal Injury Prevention, 4(2), 20–27. https://doi.org/10.12861/jrip.2015.06
Mao, H., Li, Z., Zhou, Y., Li, Z., Zhuang, S., An, X., Zhang, B., Chen, W., Nie, J., Wang, Z., Borkan, S. C., Wang, Y., & Yu, X. (2008). HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy. American journal of physiology. Renal physiology, 295(1), F202–F214. https://doi.org/10.1152/ajprenal.00468.2007
Mengqin Wang, Ji Zhang, Nianqiao Gong. (2022). Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: a narrative review. Annals of palliative medicine, Available from: 10.21037/apm-21-3286. doi: 10.21037/apm-21-3286.
Moldoveanu, T., Follis, A. V., Kriwacki, R. W., & Green, D. R. (2014). Many players in BCL-2 family affairs. Trends in biochemical sciences, 39(3), 101–111. https://doi.org/10.1016/j.tibs.2013.12.006
Netea, M. G., van de Veerdonk, F. L., van der Meer, J. W., Dinarello, C. A., & Joosten, L. A. (2015). Inflammasome-independent regulation of IL-1-family cytokines. Annual review of immunology, 33, 49–77. https://doi.org/10.1146/annurev-immunol-032414-112306
Oehadian, A., Koide, N., Mu, M. M., Hassan, F., Islam, S., Yoshida, T., & Yokochi, T. (2005). Interferon (IFN)-beta induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Cancer letters, 225(1), 85–92. https://doi.org/10.1016/j.canlet.2004.11.054
Olszewski, M. B., Groot, A. J., Dastych, J., & Knol, E. F. (2007). TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. Journal of immunology (Baltimore, Md. : 1950), 178(9), 5701–5709. https://doi.org/10.4049/jimmunol.178.9.5701
Osqueei, M.R., Mahmoudabadi, A.Z., Bahari, Z., Meftahi, G.H., Movahedi, M., Taghipour, R., Mousavi, N., Huseini, H.F., Jangravi, Z., 2023. Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance. Clinical Nutrition ESPEN 56, 59–66. https://doi.org/10.1016/j.clnesp.2023.04.016.
Pérez-López, F. R., Brincat, M., Erel, C. T., Tremollieres, F., Gambacciani, M., Lambrinoudaki, I., Moen, M. H., Schenck-Gustafsson, K., Vujovic, S., Rozenberg, S., & Rees, M. (2012). EMAS position statement: Vitamin D and postmenopausal health. Maturitas, 71(1), 83–88. https://doi.org/10.1016/j.maturitas.2011.11.002
Pierrat B, Simonen M, Cueto M, Mestan J, Ferrigno P, Heim J. (2001) "SH3GLB, a new endophilin-related protein family featuring an SH3 domain". Genomics. 71 (2): 222–34. https://doi.org/10.1006/geno.2000.6378
Q. Jallawee, H., Janabi, A., 2024. 'Trandolapril improves renal ischemia-reperfusion injury in adult male rats via activation of the autophagy pathway and inhibition of inflammation, oxidative stress, and apoptosis', Journal of Bioscience and Applied Research, 10(6), pp. 114-127. doi: 10.21608/jbaar.2024.315239.1077.
Qin, B., Zhou, Z., He, J., Yan, C., & Ding, S. (2015). IL-6 Inhibits Starvation-induced Autophagy via the STAT3/Bcl-2 Signaling Pathway. Scientific reports, 5, 15701. https://doi.org/10.1038/srep15701
Rajarajan, S., C.Ε, A., Jose, B., Correa, M., Sengupta, S., & Prabhu, J., 2020. Identification of colorectal cancers with defective DNA damage repair by immunohistochemical profiling of mismatch repair proteins, CDX2 and BRCA1. Molecular and Clinical Oncology, 13(5), 1. https://doi.org/10.3892/MCO.2020.2128
Sabbisetti, V. S., Waikar, S. S., Antoine, D. J., Smiles, A., Wang, C., Ravisankar, A., Ito, K., Sharma, S., Ramadesikan, S., Lee, M., Briskin, R., De Jager, P. L., Ngo, T. T., Radlinski, M., Dear, J. W., Park, K. B., Betensky, R., Krolewski, A. S., & Bonventre, J. V. (2014). Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. Journal of the American Society of Nephrology : JASN, 25(10), 2177–2186. https://doi.org/10.1681/ASN.2013070758
Setiawan, I., Lesmana, R., Goenawan, H., Suardi, D., Gatera, V.A., Abdulah, R., Judistiani, R.T.D., Supratman, U., Setiabudiawan, B., (2022). Calcitriol potentially alters HeLa cell viability via inhibition of autophagy. Journal of Cancer Research and Therapeutics 18, 1144. https://doi.org/10.4103/jcrt.jcrt_82_20.
Shi, S., Lei, S., Tang, C., Wang, K., & Xia, Z., 2019. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Bioscience reports, 39(1), BSR20181614. https://doi.org/10.1042/BSR20181614
Song, G., Ouyang, G. and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. Journal of Cell and Molecular Medicine, 9(1), pp.59-71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
Stokman, G., Stroo, I., Claessen, N., Teske, G. J., Florquin, S., & Leemans, J. C.,2010. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 25(12), 3852–3859. https://doi.org/10.1093/ndt/gfq311
Tweij, T. R., Al-Issa, M. A., Hamed, M., Khaleq, M. a. A., Jasim, A., & Hadi, N. R. (2022). PRETREATMENT WITH ERYTHROPOIETIN ALLEVIATES THE RENAL DAMAGE INDUCED BY ISCHEMIA REPERFUSION VIA REPRESSION OF INFLAMMATORY RESPONSE. Wiadomości Lekarskie, 75(12), 2939–2947. https://doi.org/10.36740/wlek202212108
Vinay Kumar, Abul K. Abbas, Jon C. Aster. Robbins Basic Pathology (10th edition). 2018; 37-40.
Wells, T.L., Poindexter, M.B., Kweh, M.F., Gandy, J., Nelson, C.D., (2023). Intramammary calcitriol treatment of mastitis alters profile of milk somatic cells and indicators of redox activity in milk. Veterinary Immunology and Immunopathology 266, 110679. https://doi.org/10.1016/j.vetimm.2023.110679.
Weng, C., Li, Y., Xu, D., Shi, Y., & Tang, H., 2005. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. The Journal of biological chemistry, 280(11), 10491–10500. https://doi.org/10.1074/jbc.M412819200
Westphal, D., Dewson, G., Czabotar, P. E., & Kluck, R. M. (2011). Molecular biology of Bax and Bak activation and action. Biochimica et biophysica acta, 1813(4), 521–531. https://doi.org/10.1016/j.bbamcr.2010.12.019
Westphal, D., Kluck, R. & Dewson, G., 2014. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21, 196–205. https://doi.org/10.1038/cdd.2013.139
White, L. E., & Hassoun, H. T. (2012). Inflammatory Mechanisms of Organ Crosstalk during Ischemic Acute Kidney Injury. International Journal of Nephrology, 2012, 505197. https://doi.org/10.4061/2012/505197
Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ., 1997 "Movement of Bax from the cytosol to mitochondria during apoptosis". J. Cell Biol. 139 (5): 1281–92. https://doi.org/10.1083/jcb.139.5.1281.
Yahiya, I., Hadi, N. R., & Abu Raghif, A. R., 2023. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. Journal of Medicine and Life, 16(4), 623–630. https://doi.org/10.25122/jml-2022-0280.
Yahiya, Y. I., Hadi, N. R., Abu Raghif, A. R., Qassam, H. S. J., & Said Al Habooby, N. G., 2023. Role of Iberin as an anti-apoptotic agent on renal ischemia-reperfusion injury in rats. Journal of Medicine and Life, 16(6), 915–919. https://doi.org/10.25122/jml-2022-0281.
Zhou, K., Chen, D., Jin, H., Wu, K., Wang, X., Xu, H., Zhang, X., (2016). Effects of calcitriol on experimental spinal cord injury in rats. Spinal Cord 54, 510–516. https://doi.org/10.1038/sc.2015.217.
Zhou, W., Farrar, C. A., Abe, K., Pratt, J. R., Marsh, J. E., Wang, Y., Stahl, G. L., & Sacks, S. H. (2000). Predominant role for C5b-9 in renal ischemia/reperfusion injury. The Journal of clinical investigation, 105(10), 1363–1371. https://doi.org/10.1172/JCI8621
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.