Evaluation the Kidney Protection Effect of Rosuvastatin against I\R injury in male rats. Assessment the Effect of Rosuvastatin on mTOR gene

Authors

  • Ahmed M. Abdul Hameed
  • Murooj L. Altemimi

DOI:

https://doi.org/10.52783/jns.v14.2580

Keywords:

Rosuvastatin, RIRI, Bcl-2, BAX, mTOR

Abstract

Background: In certain situations, such as sepsis, myocardial infarction, ischaemic stroke, and acute kidney damage (AKI), ischaemia reperfusion injury (IRI) appears to be the main cause of morbidity and mortality. A decrease in the blood supply to the ischaemic organ during ischaemia results in hypoxia and a slowdown of the outflow of metabolic waste products, which allows the buildup of carbon dioxide (CO2) and other debris. Chronic severe ischaemia and hypoxia cause structural and functional changes in the microvascular system. When the ischaemic tissue is rapidly restored with fresh blood that is high in oxygen and nutrients, this causes damage and oedema and also causes the endothelial layer of capillaries to create reactive oxygen species (ROS), which intensifies the inflammatory process and the NFκB signalling pathway. Complement protein is secreted along with inflammatory or immune cells, such as lymphocytes, neutrophils, and macrophages, as well as inflammatory components like tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), and interferon gamma.

Objective: This animal work is done to investigate the effectiveness of Rosuvastatin in attenuating renal injury during ischemia reperfusion through modulation of mTOR expression gene.

Method: 28 Wister Albino rats were randomly assigned to four equal groups, (N=7): Sham: Rats undergone laparotomy without ischemia. Control: Rats undergone laparotomy with bilateral RIRI for 30-minute following two hours of reperfusion. Vehicle: Rats given an intraperitoneal injection of DMSO three days before induction of RIRI. Rosuvastatin: Rats received an intraperitoneal injection of Rosuvastatin three days prior to RIRI.

Results: In comparison to the vehicle and control, the sham had significantly lower tissue levels of TNFα, IL-1β, F2 Isoprostane, BAX, and KIM-1; the results also showed that Rosuvastatin had significantly lower tissue levels of Bcl2 and mTOR, TNFα, IL-1β, BAX, and KIM-1; and the histopathology showed that Rosuvastatin could significantly reduce kidney damage.

Conclusion: The AR therapy group significantly reduced renal I/R damage in the adult male rats' bilateral renal I/R due to their pleiotropic effects, which include anti-inflammatory, anti-oxidant, and anti-apoptotic qualities, according to the study's overall findings.Additionally, by increasing the expression of the mTOR gene in ischaemic renal tissues, they prevented necrosis and apoptosis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Jallawee, H. Q. and Janabi, A. M., 2024 “Potential nephroprotective effect of dapagliflozin against renal ischemia reperfusion injury in rats via activation of autophagy pathway and inhibition of inflammation, oxidative stress and apoptosis”, South Eastern European Journal of Public Health, pp. 488–500. doi: 10.70135/seejph.vi.1009.

White LE, and Hassoun HT. 2012. Inflammatory Mechanisms of Organ Crosstalk during Ischemic Acute Kidney Injury. Int J Nephrol. 2012:505197.

Kanagasundaram NS. 2015. Pathophysiology of ischaemic acute kidney injury. Ann Clin Biochem. 52(2):193-205.

De Oliveira THC, Souza DG, Teixeira MM, and Amaral FA. 2019. Tissue Dependent Role of PTX3 During Ischemia-Reperfusion Injury. Front Immunol. 10:1461.

Kalogeris T, Baines CP, Krenz M, and Korthuis RJ. 2012. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229-317.

Kezić A, Stajic N, and Thaiss F. 2017. Innate Immune Response in Kidney Ischemia/ Reperfusion Injury: Potential Target for Therapy. J Immunol Res. 2017:6305439.

Q. Jallawee, H., Janabi, A., 2024. 'Trandolapril improves renal ischemia-reperfusion injury in adult male rats via activation of the autophagy pathway and inhibition of inflammation, oxidative stress, and apoptosis', Journal of Bioscience and Applied Research, 10(6), pp. 114-127. doi: 10.21608/jbaar.2024.315239.1077.

Yahiya, I., Hadi, N. R., & Abu Raghif, A. R., 2023. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. Journal of Medicine and Life, 16(4), 623–630. https://doi.org/10.25122/jml-2022-0280.

Olszewski M.B., Groot A.J., Dastych J., Knol E.F. 2007. TNF trafficking to human mast cell granules: Mature chain-dependent endocytosis. J. Immunol. 178:5701–5709.

Locksley R.M., Killeen N., Lenardo M.J. 2001. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 104:487–501.

Baud L, Oudinet JP, Bens M, et al. 1989. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int. 35:1111–1118.

Tipping PG, Leong TW, Holdsworth SR. 1991. Tumor necrosis factor production by glomerular macrophages in anti-glomerular basement membrane glomerulonephritis in rabbits. Lab Invest. 65:272–279.

Oehadian A., Koide N., Mu M.M., Hassan F., Islam S., Yoshida T., Yokochi T. 2005. Interferon (IFN)-β induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) Cancer Lett. 225:85–92.

Yamagishi S., Ohnishi M., Pawankar R. 2000. IL-1 and TNF-α-mediated regulation of IL-6, IL-8, and GM-CSF release from cultured nasal epithelial cells. Nihon Jibiinkoka Gakkai Kaiho. 103:829–835.

Bradley J.R. 2008. TNF-mediated inflammatory disease. J. Pathol. 214:149–160.

Islam M.S., Ciavattini A., Petraglia F., Castellucci M., Ciarmela P. 2018. Extracellular matrix in uterine leiomyoma pathogenesis: A potential target for future therapeutics. Hum. Reprod. Update. 24:59–85.

Ghazi, A., Abood, S. H., Alaqouli, H., Hadi, N. R., Majeedand, S. A., & Janabi, A. M., 2019. Ibudilast and octreotide can ameliorate acute pancreatitis via downregulation of the inflammatory cytokines and Nuclear Factor- Kappa B expression. Annals of Tropical Medicine and Public Health, 22(04), 01–07. https://doi.org/10.36295/ASRO.2019.22041.

Netea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. 2015. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 33: 49–77.

Garlanda C, Dinarello CA, Mantovani A. 2013. The interleukin-1 family: back to the future. Immunity. 39: 1003–1018.

Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, et al., 2017. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest. 127: 321–334.

Anders HJ. 2016. of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J Am Soc Nephrol. 27: 2564–2575.

Cao Q, Harris DC, Wang Y.: 2015. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda). 30: 183–194.

Anders HJ. 2014. Immune system modulation of kidney regeneration, mechanisms and implications. Nat Rev Nephrol. 10: 347–358.

Imig JD, Ryan MJ. 2013. Immune and inflammatory role in renal disease. Compr Physiol. 3: 957–976.

Brilland, B., Boud’hors, C., Wacrenier, S., Blanchard, S., Cayon, J., Blanchet, O., Piccoli, G.B., Henry, N., Djema, A., Coindre, J.-P., Jeannin, P., Delneste, Y., Copin, M.-C., Augusto, J.-F., 2023. Kidney injury molecule 1 (KIM-1): a potential biomarker of acute kidney injury and tubulointerstitial injury in patients with ANCA-glomerulonephritis. Clinical Kidney Journal 16, 1521–1533. https://doi.org/10.1093/ckj/sfad071.

Sabbisetti, V.S., Waikar, S.S., Antoine, D.J., Smiles, A., Wang, C., Ravisankar, A., Ito, K., Sharma, S., Ramadesikan, S., Lee, M. and Briskin, R., 2014. Blood kidney injury molecule-1 (KIM-1) as a biomarker for early detection of kidney injury in humans and mice. American Journal of Kidney Diseases, 64(5), pp.751-761.

Van Timmeren, M.M., Vaidya, V.S., van Ree, R.M., Bonventre, J.V., van der Poll, T., van Berkel, T.J. and Florquin, S., 2007. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in kidney transplant recipients. Transplantation, 84(12), pp.1625-1630.

Han, W.K., Bailly, V., Abichandani, R., Thadhani, R. and Bonventre, J.V., 2002. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney International, 62(1), pp.237-244.

Jiang G, Liu X, Wang M, Chen H, Chen Z, and Qiu T. 2015. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cir Bras. 30(6):422-429.

Korkmaz A, and Kolankaya D. 2010. Protective effect of rutin on the ischemia/ reperfusion induced damage in rat kidney. J Surg Res. 164(2):309-315.

Ashraf MI, Enthammer M, Haller M, Koziel K, Hermann M, and Jakob Troppmair. 2012. Intracellular Signaling in Ischemia/Reperfusion Injury (IRI): From Mechanistic Insights to Therapeutic Options. J Transplant Technol Res. S3:002.

Gomes, J. A., Milne, G., Kallianpur, A., & Shriver, L. 2022. Isofurans and Isoprostanes as Potential Markers of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage: A Prospective Observational Study. Neurocritical Care, 36(1), 202–207.

Il’yasova, D., Wang, F., Spasojevic, I., Base, K., D’Agostino Jr, R. B., & Wagenknecht, L. E. 2012. Urinary F2‐isoprostanes, obesity, and weight gain in the IRAS cohort. Obesity, 20(9), 1915–1921.

Basu, S. 2008. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxidants & Redox Signaling, 10(8), 1405–1434.

Kadiiska, M. B., Gladen, B. C., Baird, D. D., Germolec, D., Graham, L. B., Parker, C. E., Nyska, A., Wachsman, J. T., Ames, B. N., Basu, S., Brot, N., Fitzgerald, G. A., Floyd, R. A., George, M., Heinecke, J. W., Hatch, G. E., Hensley, K., Lawson, J. A., Marnett, L. J., … Barrett, J. C. 2005. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radical Biology & Medicine, 38(6), 698–710. https://doi.org/10.1016/j.freeradbiomed.2004.09.017

Giovannini L, Migliori M, Longoni B, Das DK, Bertelli A, Panichi V. et al. 2001. Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharmacol. 37:262–70.

Mengqin Wang, Ji Zhang, Nianqiao Gong. 2022. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: a narrative review. Annals of palliative medicine, Available from: 10.21037/apm-21-3286.

Huang, J. and Tindall, D.J., 2007. Dynamic FoxO transcription factors. Journal of Cell Science, 120(15), pp.2479-2487.

Song, G., Ouyang, G. and Bao, S., 2005. The activation of Akt/PKB signaling pathway and cell survival. Journal of Cell and Molecular Medicine, 9(1), pp.59-71.

Liu, N., He, S., Ma, L., Ponnusamy, M., Tang, J., Tolbert, E., Bayliss, G., Zhao, T.C., Yan, H. and Zhuang, S., 2013. Blocking the class I histone deacetylase ameliorates renal fibrosis and inflammation through modulating TGF-β and NF-κB signaling pathway. PLOS ONE, 8(1), p.e54001.

Laplante, M. and Sabatini, D.M., 2012. mTOR signaling in growth control and disease. Cell, 149(2), pp.274-293.

Kimura, T., Takabatake, Y., Takahashi, A., Kaimori, J.Y., Matsui, I., Namba, T., Kitamura, H., Niimura, F., Matsusaka, T., Soga, T. and Rakugi, H., 2011. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. Journal of Clinical Investigation, 121(5), pp.2082-2092.

Hotchkiss, R.S., Strasser, A., McDunn, J.E. and Swanson, P.E., 2009. Cell death. New England Journal of Medicine. 361(16), pp.1570-1583.

Vinay Kumar, Abul K. Abbas, Jon C. Aster. Robbins Basic Pathology (10th edition). 2018; 37-40.

Cory S. 1995. Regulation of lymphocyte survival by the bcl‐2 gene family. Annu Rev Immunol. 13:513–543.

Czabotar PE, Lessene G, Strasser A, Adams JM. 2014. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews. Molecular cell biology. 15:49–63.

Delbridge AR, Grabow S, Strasser A, Vaux DL. 2016. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nature reviews. Cancer. 16:99–109.

Moldoveanu T, Follis AV, Kriwacki RW, Green DR. 2014. Many players in BCL-2 family affairs. Trends Biochem Sci. 39:101–111.

Luciani DS, White SA, Widenmaier SB, Saran VV, Taghizadeh F, Hu X, Allard MF, Johnson JD. 2013 "Bcl-2 and Bcl-xL suppress glucose signaling in pancreatic ß-cells". Diabetes. 62 (1): 170–182.

Al-Zubaidy, H. F. S., Majeed, S. R., & Al-Koofee, D. a. F., 2022. Evaluation of Bax and BCL 2 Genes Polymorphisms in Iraqi Women with Breast Cancer. DOAJ (DOAJ: Directory of Open Access Journals), 77(2), 799–808. https://doi.org/10.22092/ari.2022.357090.1968.

Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell. 144:646–674.

Reed JC, Pellecchia M. 2005. Apoptosis‐based therapies for hematologic malignancies. Blood. 106:408–418.

Qin B, Zhou Z, He J, Yan C, Ding S. 2015. IL-6 Inhibits Starvation-induced Autophagy via the STAT3/Bcl-2 Signaling Pathway. Scientific reports. 5:15701.

Westphal D, Dewson G, Czabotar PE, Kluck RM. 2011. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta. 1813: 521–531.

Docherty NG, O'Sullivan OE, Healy DA, Fitzpatrick JM, Watson RW. 2006. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol. 290: F4–F13.

Mao H, Li Z, Zhou Y, Li Z, Zhuang S, An X, Zhang B, Chen W, Nie J, Wang Z, Borkan SC, Wang Y, Yu X. 2008. HSP72 attenuates renal tubular cell apoptosis and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 295: F202–F214.

Padanilam BJ. 2003. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol. 284: F608–F627.

Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW 2nd, O'Rourke B, Kitsis RN. 2012. Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA. 109: 6566–6571.

Zhang G, Oldroyd SD, Huang LH, Yang B, Li Y, Ye R, El Nahas AM. 2001. Role of apoptosis and Bcl-2/Bax in the development of tubulointerstitial fibrosis during experimental obstructive nephropathy. Exp Nephrol. 9: 71–80.

Gross A, Jockel J, Wei MC, Korsmeyer SJ. 1998 "Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis". EMBO J. 17 (14): 3878–85.

Hsu YT, Wolter KG, Youle RJ. 1997 "Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis". Proc. Natl. Acad. Sci. U.S.A. 94 (8): 3668–72.

Nechushtan A, Smith CL, Hsu YT, Youle RJ. 1999 "Conformation of the Bax C-terminus regulates subcellular location and cell death". EMBO J. 18 (9): 2330–41.

Pierrat B, Simonen M, Cueto M, Mestan J, Ferrigno P, Heim J. 2001 "SH3GLB, a new endophilin-related protein family featuring an SH3 domain". Genomics. 71 (2): 222–34.

Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. 1997 "Movement of Bax from the cytosol to mitochondria during apoptosis". J. Cell Biol. 139 (5): 1281–92.

Weng C, Li Y, Xu D, Shi Y, Tang H. 2005 "Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells". J. Biol. Chem. 280 (11): 10491–500.

Westphal, D; Kluck, RM; Dewson, G. 2014 "Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis". Cell Death & Differentiation. 21 (2): 196–205.

Karr, S., 2017. Epidemiology and management of hyperlipidemia. American Journal of Managed Care, 23(9 Suppl), pp.S139-S148.

K, ini S. C., 2016. Review on Rosuvastatin. Research and Reviews: Journal of Pharmacology and Toxicological Studies, 4(3), 1–8. https://www.rroij.com/open-access/review-on-rosuvastatin-.pdf

Martin, P.D., Warwick, M.J., Dane, A.L., Hill, S.J., Giles, P.B., Phillips, P.J. and Williams, G., 2003. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clinical Therapeutics, 25(11), pp.2822-2835.

Ridker, P.M., Danielson, E., Fonseca, F.A., Genest, J., Gotto, A.M., Kastelein, J.J., Koenig, W., Libby, P., Lorenzatti, A.J., MacFadyen, J.G. and Nordestgaard, B.G., 2008. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359(21), pp.2195-2207.

Yahiya, Y. I., Hadi, N. R., Abu Raghif, A. R., Qassam, H. S. J., & Said Al Habooby, N. G., 2023. Role of Iberin as an anti-apoptotic agent on renal ischemia-reperfusion injury in rats. Journal of Medicine and Life, 16(6), 915–919. https://doi.org/10.25122/jml-2022-0281.

Zhou W, Farrar C, Abe K, et al., 2000. Predominant role for C5b-9 in renal ischemia /reperfusion injury . J Clin Invest. 105:1363-1371.

Bussmanni André Roberto , Marcos Antônio Marton Filhoii, Marília Pinheiro Módoloii, Renata Pinheiro Módoloiii, Patrícia Amadoii, Maria Aparecida Custódio Dominguesiv, Yara Marcondes Machado Castigliav. 2014. Effect Of Allopurinol On The Kidney Function, Histology And Injury Biomarker (Ngal, Il-18) Levels In Uninephrectomised Rats Subjected To Ischemia-Reperfusion Injury. Acta Cirúrgica Brasileira . 29 (8): 515.

Chen, W., Xi, X., Zhang, S., Zou, C., Kuang, R., Ye, Z., et al. 2018. Pioglitazone protects against renal ischemia-reperfusion injury via the AMPactivated protein kinase-regulated autophagy pathway. Front. Pharmacol. 9:851.

Alaasam, E. R., Janabi, A. M., Al-Buthabhak, K. M., Almudhafar, R. H., Hadi, N. R., Alexiou, A., Papadakis, M., Fetoh, M. E. A., Fouad, D., & Batiha, G. E., 2024. Nephroprotective role of resveratrol in renal ischemia-reperfusion injury: a preclinical study in Sprague-Dawley rats. BMC Pharmacology and Toxicology, 25(1). https://doi.org/10.1186/s40360-024-00809-8.

Hameed, A.M.A., Altemimi, M.L., Al-Mudhafar, R.H., Al-Mudhafar, D.H., Hadi, N.R., 2021. The Anti-Apoptotic, Anti-Inflammatory and Anti-Oxidant Effects of Olmesartan on Renal I/R Injury in Male Rat Model. Systematic Reviews in Pharmacy 12, 411–425.

Chiorescu, S., Andercou, O. A., Grad, N. O., & Mironiuc, I. A. 2018. Intraperitoneal Administration of Rosuvastatin Prevents Postoperative Peritoneal Adhesions by Decreasing the Release of Tumor Necrosis Factor. Medicine and Pharmacy Reports, 91(1), 79–84. https://doi.org/10.15386/cjmed-85978 Han P, Qin Z, Tang J, Xu Z, Li R, Jiang X, et al. RTA-408 Protects Kidney from Ischemia-Reperfusion Injury in Mice via Activating Nrf2 and Downstream GSH Biosynthesis Gene. Oxidative medicine and cellular longevity. 2017; 2017:7612182.

Tweij, T. R., Al-Issa, M. A., Hamed, M., Khaleq, M. a. A., Jasim, A., & Hadi, N. R. (2022). Pretreatment With Erythropoietin Alleviates The Renal Damage Induced By Ischemia Reperfusion Via Repression Of Inflammatory Response. Wiadomości Lekarskie, 75(12), 2939–2947. https://doi.org/10.36740/wlek202212108

Jaya D, Manvendra S, Swapnil S and sharad S. 2017. Antioxidant and Nephroprotective Potential of Aegle marmelos Leaves Extract, Journal of Herbs, Spices & Medicinal Plants. 23(4):363-377.

Osqueei, M.R., Mahmoudabadi, A.Z., Bahari, Z., Meftahi, G.H., Movahedi, M., Taghipour, R., Mousavi, N., Huseini, H.F., Jangravi, Z., 2023. Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance. Clinical Nutrition ESPEN 56, 59–66. https://doi.org/10.1016/j.clnesp.2023.04.016.

Kunst, S., Wolloscheck, T., Hölter, P., Wengert, A., Grether, M., Sticht, C., Weyer, V., Wolfrum, U., Spessert, R., 2013. Transcriptional analysis of rat photoreceptor cells reveals daily regulation of genes important for visual signaling and light damage susceptibility. Journal of Neurochemistry 124, 757–769. https://doi.org/10.1111/jnc.12089.

Shi S, Lei S, Tang C, Wang K and Xia Z. 2019. Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway. Bioscience reports. 39(1): BSR20181614.

Rajarajan S, C E A, Jose B, Correa M, Sengupta S, and Prabhu JS. 2020. Identification of colorectal cancers with defective DNA damage repair by immunohistochemical profiling of mismatch repair proteins, CDX2 and BRCA1. Mol Clin Oncol. 13(5):57.

Malek, M. And Nematbakhsh, M. 2015. Renal Ischemia/Reperfusion Injury; From Pathophysiology To Treatment. Journal Of Renal Injury Prevention. 4(2), P.20.

Hadi, N.R., Al-Amran, F.G., Abbas, M.K., Hussein, Y.A., Al-Yasiri, I.K. And Kartikey, K. 2017. The Cardioprotective Potential Of Bosentan In Myocardial Ischemia Reperfusion Injury. World Heart Journal. 9(2), Pp.155-163.

Tang, T.-T., Wang, B., Li, Z.-L., Wen, Y., Feng, S.-T., Wu, M., Liu, D., Cao, J.-Y., Yin, Q., Yin, D., Fu, Y.-Q., Gao, Y.-M., Ding, Z.-Y., Qian, J.-Y., Wu, Q.-L., Lv, L.-L., Liu, B.-C., 2021. Kim-1 Targeted Extracellular Vesicles: A New Therapeutic Platform for RNAi to Treat AKI. Journal of the American Society of Nephrology 32, 2467–2483. https://doi.org/10.1681/asn.2020111561.

Sung, P.-H., Cheng, B.-C., Hsu, T.-W., Chiang, J.Y., Chiang, H.-J., Chen, Y.-L., Yang, C.-C., Yip, H.-K., 2022. Oxidized-LDL Deteriorated the Renal Residual Function and Parenchyma in CKD Rat through Upregulating Epithelial Mesenchymal Transition and Extracellular Matrix-Mediated Tubulointerstitial Fibrosis—Pharmacomodulation of Rosuvastatin. Antioxidants 11, 2465. https://doi.org/10.3390/antiox11122465.

Shafik, M.S., El-Tanbouly, D.M., Bishr, A., Attia, A.S., 2023. Insights into the role of PHLPP2/Akt/GSK3β/Fyn kinase/Nrf2 trajectory in the reno-protective effect of rosuvastatin against colistin-induced acute kidney injury in rats. Journal of Pharmacy and Pharmacology 75, 1076–1085. https://doi.org/10.1093/jpp/rgad019.

Saad, H.M., Elekhnawy, E., Shaldam, M.A., Alqahtani, M.J., Altwaijry, N., Attallah, N.G.M., Hussein, I.A., Ibrahim, H.A., Negm, W.A., Salem, E.A., 2024. Rosuvastatin and diosmetin inhibited the HSP70/TLR4 /NF-κB p65/NLRP3 signaling pathways and switched macrophage to M2 phenotype in a rat model of acute kidney injury induced by cisplatin. Biomedicine & Pharmacotherapy 171, 116151. https://doi.org/10.1016/j.biopha.2024.116151.

Ghaith, K., Shalaby, M., Ramadan, A., El-Rahman, S.A., Fayed, H., 2022. Rosuvastatin Restrains the Headway of Experimentally Induced Liver Fibrosis: Involvement of NF-κB and Nrf2/HO-1 Signaling Pathway. International Journal of Veterinary Science 12, 366–374. https://doi.org/10.47278/journal.ijvs/2022.201.

Thej, M.K., Bitla, A.R., Rao, Pvlns., Sachan, A., 2024. Effect of Rosuvastatin on Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Prospective Interventional Study. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/jcdr/2024/67904.19491.

Sultan, F., Kaur, R., Tarfain, N.U., Mir, A.H., Dumka, V.K., Sharma, S.K., Saini, S.P.S., 2022. Protective effect of rosuvastatin pretreatment against acute myocardial injury by regulating Nrf2, Bcl-2/Bax, iNOS, and TNF-α expressions affecting oxidative/nitrosative stress and inflammation. Human & Experimental Toxicology 41, 096032712110660. https://doi.org/10.1177/09603271211066065.

Wang, K., Li, B., Xie, Y., Xia, N., Li, M., Gao, G., 2020. Statin rosuvastatin inhibits apoptosis of human coronary artery endothelial cells through upregulation of the JAK2/STAT3 signaling pathway. Molecular Medicine Reports 22, 2052–2062. https://doi.org/10.3892/mmr.2020.11266.

Gong, L., Wang, X., Pan, J., Zhang, M., Liu, D., Liu, M., Li, L., An, F., 2020. The co-treatment of rosuvastatin with dapagliflozin synergistically inhibited apoptosis via activating the PI3K/AKt/mTOR signaling pathway in myocardial ischemia/reperfusion injury rats. Open Medicine 16, 047–057. https://doi.org/10.1515/med-2021-0005.

Downloads

Published

2025-03-25

How to Cite

1.
Abdul Hameed AM, L. Altemimi M. Evaluation the Kidney Protection Effect of Rosuvastatin against I\R injury in male rats. Assessment the Effect of Rosuvastatin on mTOR gene. J Neonatal Surg [Internet]. 2025Mar.25 [cited 2025Sep.24];14(4):158-74. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/2580