Antioxidant Potential of Seed Extracts of Cucurbita Pepo, Ocimum Basillicum, Trachyspermum Ammi and Linum Usitatissimum - Individual and Synergistic Effect
DOI:
https://doi.org/10.52783/jns.v14.2420Keywords:
Synergistic effect, ABTS, Scavenging capacity, Flavonoids, Carotenoids, Free radicals, Oxidative stressAbstract
The plant kingdom is known for its rich antioxidant compounds. They have shown promise not just as food additives that prevent oxidation but also as supplements that prevent diseases brought on by oxidative stress. Antioxidants are rich in phytochemicals like flavonoids, carotenoids, polyphenolics and can readily scavenge free radicals. The present study aimed at screening phytoconstituents like terpenoids, alkaloids, saponins, tannins, flavonoids, phenolics and antioxidant potential in seed extracts of Cucurbita pepo (pumpkin), Ocimum basillicum (Basil), Trachyspermum ammi (Ajwain) and Linum usitatissimum (flax) in three different solvents. The extensive study investigated the synergistic antioxidant potential of methanolic, aqueous, and ethyl acetate extracts of the selected 4 seeds in comparison with individual seed extracts. ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6 sulfonic acid assay) studied the antioxidant effect. The variance in IC 50 values between solvents reveals the polarity of the solvents, as well as the polarity of the extracted phytochemicals which may affect how much phytochemical extraction is accomplished. ABTS assay measures radical scavenging capacity in terms of absorbance. The result findings were expressed as percentage inhibition in three different solvents – methanolic extracts ranging from 48.35±0.55 to 93.24±0.35; aqueous extract 49.27±0.06 to 89.63±0.05; ethyl acetate extract 52.32±0.67 to 95.66±0.04. The results established that synergistic IC50 values are significantly lesser indicating higher antioxidant potential than individual seed extracts in all three chosen solvents. The benefits of these seed extracts’ synergistic antioxidant properties can be investigated in further detail, for their potential applications as natural preservatives in cooking oils and supplements in food products to enhance immunity and prevent chronic diseases caused by oxidative stress.
Downloads
Metrics
References
Prakash, A., Rigelhof, F., & Miller, E. (2004). Antioxidant Activity Inmedallion Laboratories Analytical Progress. Medallion Laboratories, Minneapolis. USA, 1-4.
Varnished-Maslarova, N.V., & Heinonen, I.M. (2001). Sources of natural antioxidants, vegetables, fruits, herbs, spices, and teas. In: Pokorny J, Yanishlieva N, Gordon M, editors. Antioxidants in food, practical applications, Sawston, UK: Wood head Publishing; 210-266.
Sikora, E., Cieslik, E., & Topolska, K. (2008). The source of natural antioxidants. Acta Sci. Pol. Technol. Aliment. 7: 5-17.
Mathew, S., & Abraham, E.T. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem 94: 520-528.
Halvorsen, B.L., Holte, K., Myhrstad, M.C.W., Barigmo, I., Hvattum, E., & Remberg, S.F.A. (2002). Systematic screening of total antioxidants in dietary plants. J. Nutr. 132(3): 461-471.
Elioglu, Y.S., Mazza, G., Gao, L., & Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric Food Chem. 46: 4113-4117.
Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karaqoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res. 11: 938-941.
Hodzic, Z., Pasalic, H., Memisevic, A., Srabovic, M., Saletovic, M., & Poljakovic, M. (2009). The Influence of total phenols content on antioxidant capacity in the whole grain extract. Eur J Sci Res. 3: 471-477.
Qureshi, A.A., & Kumar, K.E. (2010). Petrochemical constituents and pharmacological activities of Trachyspermum ammi. Plant Archives 10(2): 955-959.
Rezig, L., Chouaibi, M., Meddeb, W., Msaada, K., & Hamdi, S. (2019). Chemical composition and bioactive compounds of Cucurbitaceae seeds: potential sources for new trends of plant oils. Process Safe Environ Protect 127: 73-81.
Zhang, H., Liu, C., & Zheng, Q. (2019). Development and application of anthelminthic drugs in China. Acta Tropica. 200.
Stanojevic, L.P., Marjanovic-Balaban, Z.R., Kalaba, V.D., Stanojevic, J.S., Cvetkovic, D.J., & Cakic, M.D. (2017). Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J Essent Oil-Bear Plants 20(6): 1557-1569.
Singh, D., & Chaudhuri, P.K. (2018). A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crop Prod 118: 367-382.
Newman, D.J., & Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79: 629-661.
Dhaiwal, K., Chahal, K.K., Kataria, D., & Kumar, A. (2017). Gas chromatography-mass spectrometry analysis and in vitro antioxidant potential of ajwain seed (Trachyspermum ammi L.) essential oil and its extracts. J Food Biochem. https://doi.org/10.1111/jfbc.12364
Kajla, P., Sharma, A., & Sood, D.R. (2014) Flaxseed - a potential functional food source. J Food Sci Techno. 52(4): 1857-1871.
Oomah, B.D. (2001). Flaxseed as a functional food source. J Sci Food Agric 81: 889-894.
Fukumitsu, S., Aida, K., Shimizu, H., & Toyoda, K. (2010). Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hyper cholesterolemic men. Nutr Res 30: 441-446.
Mojab, F., Kamalinejad, M., Ghaderi, N., & Vanidipour, H.R. (2003). Phytochemical screening of some species of Iranian plants. Iran J Pharm Res 3: 77-82.
Sofowora, A. (1993). Screening Plants for Bioactive Agents. In: Medicinal Plants and Traditional Medical in Africa, 2nd Ed. Sunshine House, Ibadan, Nigeria, Spectrum Books Ltd; 134–156.
Harborne, B. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Springer Science & Business Media.
Re, R., Pellegrini, N., Proteggente, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26: 1231-1237.
Unior, V., Arruda, I., Bemme, L., et al. (2013). Thermal and spectroscopic characterization of chitosan microcapsules incorporated with propolis. Univar Elec J 2(10): 161 - 165.
Mohammed, S.J., Amin, H.H.H., Aziz, S.B., Sha, A.M., Hassan, S., Aziz, J.M.A., & Rahman, H.S. (2019). Structural characterization, antimicrobial activity, and in vitro cytotoxicity effect of black seed Oil. Evid. Based Complement. Altern. Med. 6515671.
Nikkhahi, M., Souri, E., Sarkhail, P., Baeeri, M., & Hosseini, M.N. (2018). Evaluation of anti-tyrosinase activity of Allium ursinum extracts and their metal complexes. Acta Sci. Pol. Technol. Aliment. 17: 219–226.
Sharaf, S., Higazy, A., & Hebeish, A. (2013). Propolis induced antibacterial activity and other technical properties of cotton textiles. Inter J Bio Macromol. 59: 408–416.
Mot, A., Silaghi-DR, & Sârbu, C. (2011). Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV–vis spectroscopic data. J Food Compos Anal. 24(4-5): 516–522.
Silva, A., Silva, J., & De Souza, N., et al. (2014). Membranes from latex with propolis for biomedical applications. Mater. Lett. 116(1): 235–238.
Heneczkowski, M., Kopacz, M., Nowak, D., & Kuźniar, A. (2002) Infrared spectrum analysis of some flavonoids. Acta Pol Pharm Drug Res 58: 415–420.
Skotti, E., Kountouri, S., Bouchagier, P., et al. (2014). FTIR spectroscopic evaluation of changes in the cellular biochemical composition of the phytopathogenic fungus Alternaria alternata induced by extracts of some Greek medicinal and aromatic plants. Spectrochimica Acta Part A: Mol. Biomol. Spec. 127: 463–472.
Schulz, H., Ozkan, G., Baranska, M., et al. (2005) Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. Vib. Spec. 39(2): 249–256.
Gutierrez-Gonçalves, M.E.J., & Marcucci, M.C. (2009) Antimicrobial and antioxidant activities of própolis from Ceará State. Revista Fitos 4(1): 81-86.
Shurvell, H.F. (2002) Spectra-structure correlations in the mid and far infrared. In: Chalmers JM, Griffiths PR. Editors. Handbook of vibrational spectroscopy, Chichester, UK. John Wiley & Sons Ltd. 1783–1816.
Coates, J. (2000). Interpretation of infrared spectra: A practical approach. In: Meyers RA. Editor. Encyclopedia of Analytical Chemistry; Chichester, UK. John Wiley & Sons Ltd. 10815–10837.
Toure, A., & Xueming, X. (2010) Flaxseed lignans: source, biosynthesis, metabolism, antioxidant activity, bio-active components and health benefits. Compr Rev Food Sci Food Saf. 9: 261-269.
Hussain, S., Anjum, F.M., Butt, M.S., Khan, M.I., & Asghar, A. (2006) Physical and sensoric attributes of flaxseed flour supplemented cookies. Turk. J. Bio. 30(2): 87-92.
Kathirvel, P., & Ravi, S. (2012). Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and it’s in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts. Nat Prod Res 26(12): 1112-8.
Bardaa, S., Halima, B.N., Aloui, F., Mansour, R.B., Jabeur, H., Bouaziz, M., & Sahnoun, Z. (2016). Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids Health Dis 5: 1-12.
Haleshappa, R., Sajeeda, N., Kolgi, R. R., Patil, S. J., & Murthy, S. K. M. (2022). Phytochemicals, anti-nutritional factors and proximate analysis of Simarouba glauca seeds. Int Advan Res J Sci, Engg Technol, 09(3), 218-227.
Haleshappa, R., Patil, S. J., & Murthy, S. M. S. (2021). Phytochemical analysis, in vitro evaluation of antioxidant and free radical scavenging activity of Simarouba glauca seeds. Advan Pharmacol Pharm, 9(1), 01-08.
Kolgi, R. R., Haleshappa, R., Sajeeda, N., Keshamma, E., Karigar, C. S., & Patil, S. J. (2021). Antioxidant and anticancer properties of ethanol extracts of Leucas aspera. Asian J Biolog Life Sci, 10(1), 165-171.
Giri, S., Jamade, P. S., Pendakur, B., Sanjotha, G., Manawadi, S., Binorkar, S. V., Rao, N. S., & Patil, S. J. (2024). Anticancer, antidiabetic, antioxidant properties and phytoconstituents of efficacy of methanolic extract of Euphorbia milii leaves. Afr J Biol Sci, 6(6), 5419-5429.
Devika, S. N. C., Keerthana, M., Dsouza, M. R., Patil, S. J., & Premalatha, S. J. (2024). Comparative in vitro study of the antidiabetic, anti-inflammatory, and antioxidant potential of Piper cubeba, Piper betle, and Piper nigrum. The Bioscan, 19(10-S1), 238-249.
Sreedharan, S., Gothe, A., Aier, K., Kirankumar, S. V., Kumar, K. P., & Patil, S. J. (2020). Bioactive molecules and antimicrobial studies of Rhus semialata seeds. Res J Med Plant, 13(1), 10-17.
Haleshappa, R., Patil, S. J., Usha, T., & Murthy, S. M. (2020). Phytochemicals, antioxidant profile and GCMS analysis of ethanol extract of Simarouba glauca seeds. Asian J Biolog Life Sci, 9(3), 379-385.
Eramma, N., & Patil, S. J. (2023). Exploration of the biomolecules in roots of Flacourtia indica (Burm F) Merr. methanol extract by chromatography approach. Lett Appl Nano BioSci, 12(4), 166.
Karishma, K. B., Banu, A. M., Venkatesh, C. N., Prakruthi, Siddalingeshwara, K. G., Sadashiv, S. O., & Patil, S. J. (2023). Comparative analysis of phytochemical potential in ethanol extract of Cosmos bipinnatus and Pteries fauriei leaves. Advan Pharmacol Toxicol, 24(1), 25-32.
Jyothi, R., Murthy, K. M., Prithiviraj, N., Premalatha, S. J., Mohan Kumar, B. S., Sadashiv, S. O., Lokeshwari, & Patil, S. J. (2024). Colocasia esculenta - An important medicinal plant of India. Afr J Biomed Res, 27(3S), 3687-3692.
Giri, S., Ankali, S., Pavani, M., Binorkar, S. K., Keshamma, E., Kolgi, R. R., Lavanya, L., & Patil, S. J. (2024). Anti-inflammatory, anticancer, and phytochemical potential of Indigofera cordifolia various extracts. Afr J Biolog Sci, 6(6), 6561-6572.
Pushpa, T. C., Gupta, A. A., Shukla, N., Gupta, P. C., Kumar, S., Sheba, A. S., Sharma, M. K., & Patil, S. J. (2023). Evaluation of in vitro, anti-inflammatory and anti-oxidant activity on the aqueous and ethanolic extract of leaves of Hygrophila balsamica. China Petrol Process Petrochem Technol, 23(2), 2750-2764.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.