Development and optimization of efinaconazole-loaded nanostructured lipid carriers: Enhanced antifungal efficacy and skin penetration for topical treatment of superficial fungal infections

Authors

  • Akshay Kumar
  • Ayushi Singh
  • Sunil Kumar

Keywords:

Efinaconazole, Drug delivery, Central Composite Design, Cytotoxicity, Nanoformulations

Abstract

The broad-spectrum topical triazole antifungal agent efinaconazole (EFI) has poor bioavailability because it demonstrates limited water solubility combined with inadequate persistence and penetration through the skin. This research studied nanostructured lipid carriers containing efinaconazole (EFI-NLCs) for developing an evaluation of their characteristics and antifungal properties in vitro investigations. The researchers manufactured EFI-NLCs through high-pressure homogenization while evaluating their characteristics via PDI analysis, zeta potential measurement, EE% determination, SEM imaging, thermal analysis and FTIR spectroscopy evaluation. Scientists conducted tests for in vitro drug release as well as antifungal susceptibility assessment and cytotoxicity analysis. The research showed that EFI-NLCs contained nanosized dimensions together with distributed particles and possessed a desirable zeta potential complemented by encapsulation efficiency at 85%. SEM micrographs confirmed that the prepared nanoparticles exhibited spherical geometries with uniform distribution of their shapes. The FTIR spectrum indicated that EFI had no destructive chemical reactions with any of the excipients used. Drug diffusion from the NLC formulation showed a substantial rise based on drug release pattern analysis. EFI-NLC gels successfully passed stability tests which demonstrated maintained physical stability aspects at acceptable boundaries. These tests established low toxicity measurements together with superior antifungal properties against strains of Candida albicans and Aspergillus species. A software-based Central Composite Design (CCD) with Design-Expert enabled the optimization process for concentration of surfactant (%), concentration of total lipid (%) and time of homogenization (minutes). The optimization process used three response variables to find the best characteristics for the EFI-NLC formulation. The evaluation indicated that EFI-NLC gel shows encouraging qualities for treating superficial fungal skin infections topically.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

F. Almeida, M.L. Rodrigues, C. Coelho, The Still Underestimated Problem of Fungal Diseases Worldwide, Front. Microbiol.10 (2019) 214. https://doi.org/10.3389/fmicb.2019.00214.

G.K.K. Reddy, A.R. Padmavathi, Y.V. Nancharaiah, Fungal infections: Pathogenesis, antifungals and alternate treatment approaches, Current Research in Microbial Sciences 3 (2022) 100137. https://doi.org/10.1016/j.crmicr.2022.100137.

J.R. Kohler, A. Casadevall, J. Perfect, The Spectrum of Fungi That Infects Humans, Cold Spring Harbor Perspectives in Medicine 5 (2015) a019273–a019273. https://doi.org/10.1101/cshperspect.a019273.

P. Chanyachailert, C. Leeyaphan, S. Bunyaratavej, Cutaneous Fungal Infections Caused by Dermatophytes and Non-Dermatophytes: An Updated Comprehensive Review of Epidemiology, Clinical Presentations, and Diagnostic Testing, JoF 9 (2023) 669. https://doi.org/10.3390/jof9060669.

S.R. Jartarkar, A. Patil, Y. Goldust, C.J. Cockerell, R.A. Schwartz, S. Grabbe, M. Goldust, Pathogenesis, Immunology and Management of Dermatophytosis, JoF 8 (2021) 39. https://doi.org/10.3390/jof8010039.

H.R. Mahmood, M. Shams-Ghahfarokhi, Z. Salehi, M. Razzaghi-Abyaneh, Epidemiological trends, antifungal drug susceptibility and SQLE point mutations in etiologic species of human dermatophytosis in Al-Diwaneyah, Iraq, Sci Rep 14 (2024) 12669. https://doi.org/10.1038/s41598-024-63425-w.

J.A.M.S. Jayatilake, A Review of the Ultrastructural Features of Superficial Candidiasis, Mycopathologia 171 (2011) 235–250. https://doi.org/10.1007/s11046-010-9373-7.

G. Teklebirhan, Profile of Dermatophyte and Non Dermatophyte Fungi in Patients Suspected of Dermatophytosis, AJLS 3 (2015) 352. https://doi.org/10.11648/j.ajls.20150305.13.

Gesew, G. T. Prevalence of dermatophytes and non-dermatophyte fungal Infection among patients visiting dermatology clinic, at TikurAnbessa hospital (Addis Ababa, Ethiopia, Addis Ababa University, 2014).

A.K. Gupta, T. Wang, E.A. Cooper, R.C. Summerbell, V. Piguet, A. Tosti, B.M. Piraccini, A comprehensive review of nondermatophytemould onychomycosis: Epidemiology, diagnosis and management, AcadDermatolVenereol 38 (2024) 480–495. https://doi.org/10.1111/jdv.19644.

A. Arastehfar, T. Gabaldón, R. Garcia-Rubio, J.D. Jenks, M. Hoenigl, H.J.F. Salzer, M. Ilkit, C. Lass-Flörl, D.S. Perlin, Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium, Antibiotics 9 (2020) 877. https://doi.org/10.3390/antibiotics9120877.

K. Iozumi, M. Abe, Y. Ito, T. Uesugi, T. Onoduka, I. Kato, F. Kato, K. Kodama, H. Takahashi, O. Takeda, K. Tomizawa, T. Nomiyama, M. Fujii, J. Mayama, F. Muramoto, H. Yasuda, K. Yamanaka, T. Sato, T. Oh‐i, H. Kasai, R. Tsuboi, N. Hattori, R. Maruyama, T. Omi, H. Shimoyama, Y. Sei, I. Nakasu, S. Nishimoto, Y. Hata, T. Mochizuki, M. Fukuzawa, M. Seishima, K. Sugiura, I. Katayama, O. Yamamoto, M. Shindo, H. Kiryu, M. Kusuhara, M. Takenaka, S. Watanabe, Efficacy of long‐term treatment with efinaconazole 10% solution in patients with onychomycosis, including severe cases: A multicenter, single‐arm study, The Journal of Dermatology 46 (2019) 641–651. https://doi.org/10.1111/1346-8138.14935.

V. Bhatt, R. Pillai, Efinaconazole Topical Solution, 10%: Formulation Development Program of a New Topical Treatment of Toenail Onychomycosis, Journal of Pharmaceutical Sciences 104 (2015) 2177–2182. https://doi.org/10.1002/jps.24459.

A.K. Gupta, F.C. Simpson, Efinaconazole (Jublia) for the treatment of onychomycosis, Expert Review of Anti-Infective Therapy 12 (2014) 743–752. https://doi.org/10.1586/14787210.2014.919852.

C. Gorzelanny, C. Mess, S.W. Schneider, V. Huck, J.M. Brandner, Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them?, Pharmaceutics 12 (2020) 684. https://doi.org/10.3390/pharmaceutics12070684.

S. Baghel, V.S. Nair, A. Pirani, A.B. Sravani, B. Bhemisetty, K. Ananthamurthy, J.M. Aranjani, S.A. Lewis, Luliconazole‐loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections, Dermatologic Therapy 33 (2020). https://doi.org/10.1111/dth.13959.

B. Palmer, L. DeLouise, Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting, Molecules 21 (2016) 1719. https://doi.org/10.3390/molecules21121719.

Y.-Q. Yu, X. Yang, X.-F.Wu, Y.-B. Fan, Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications, Front. Bioeng.Biotechnol.9 (2021) 646554. https://doi.org/10.3389/fbioe.2021.646554.

S.Z. Alshawwa, A.A. Kassem, R.M. Farid, S.K. Mostafa, G.S. Labib, Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence, Pharmaceutics 14 (2022) 883. https://doi.org/10.3390/pharmaceutics14040883.

P. Ghasemiyeh, S. Mohammadi-Samani, Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: Advantages and Disadvantages, DDDT Volume 14 (2020) 3271–3289. https://doi.org/10.2147/DDDT.S264648.

S. Gupta, P. Kumar, Drug Delivery Using Nanocarriers: Indian Perspective, Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82 (2012) 167–206. https://doi.org/10.1007/s40011-012-0080-7.

C.M.B. Pinilla, N.A. Lopes, A. Brandelli, Lipid-Based Nanostructures for the Delivery of Natural Antimicrobials, Molecules 26 (2021) 3587. https://doi.org/10.3390/molecules26123587.

S. Nene, S. Shah, N. Rangaraj, N.K. Mehra, P.K. Singh, S. Srivastava, Lipid based nanocarriers: A novel paradigm for topical antifungal therapy, Journal of Drug Delivery Science and Technology 62 (2021) 102397. https://doi.org/10.1016/j.jddst.2021.102397.

M. Haider, S.M. Abdin, L. Kamal, G. Orive, Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review, Pharmaceutics 12 (2020) 288. https://doi.org/10.3390/pharmaceutics12030288.

E.A. Madawi, A.R. Al Jayoush, M. Rawas-Qalaji, H.E. Thu, S. Khan, M. Sohail, A. Mahmood, Z. Hussain, Polymeric Nanoparticles as Tunable Nanocarriers for Targeted Delivery of Drugs to Skin Tissues for Treatment of Topical Skin Diseases, Pharmaceutics 15 (2023) 657. https://doi.org/10.3390/pharmaceutics15020657.

Talei, M. R. Metal nanoparticles as Novel Drug Delivery systems: a review of current challenges and opportunities. Iraqi J. Nat. Sci. Nanatechnol. 4 (2023) 113–140.

J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.-S. Shin, Nano based drug delivery systems: recent developments and future prospects, J Nanobiotechnol 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8.

N.M. Mahajan, ed., Photophysics and nanophysics in therapeutics, Elsevier, Amsterdam, Netherlands, 2022.

M. Elmowafy, M.M. Al-Sanea, Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies, Saudi Pharmaceutical Journal 29 (2021) 999–1012. https://doi.org/10.1016/j.jsps.2021.07.015.

A. Khosa, S. Reddi, R.N. Saha, Nanostructured lipid carriers for site-specific drug delivery, Biomedicine & Pharmacotherapy 103 (2018) 598–613. https://doi.org/10.1016/j.biopha.2018.04.055.

S. Khan, A. Sharma, V. Jain, An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes, Adv Pharm Bull 13 (2023) 446–460. https://doi.org/10.34172/apb.2023.056.

S. Babaei, S. Ghanbarzadeh, Z.M. Adib, M. Kouhsoltani, S. Davaran, H. Hamishehkar, Enhanced skin penetration of lidocaine through encapsulation into nanoethosomes and nanostructured lipid carriers: a comparative study, Pharmazie 71 (2016) 247–251.

B. Gaba, M. Fazil, S. Khan, A. Ali, S. Baboota, J. Ali, Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride, Bulletin of Faculty of Pharmacy, Cairo University 53 (2015) 147–159. https://doi.org/10.1016/j.bfopcu.2015.10.001.

Ma Jia Yuan, HashamRosnani, AbdRasidZaitulIffa, Mohamed Noor Norhayati, Formulation and Characterization of Nanostructured Lipid Carrier Encapsulate Lemongrass Oil Using Ultrasonication Technique, Chemical Engineering Transactions 83 (2021) 475–480. https://doi.org/10.3303/CET2183080.

M. Saeedi, K. Morteza-Semnani, A. Siahposht-Khachaki, J. Akbari, M. Valizadeh, A. Sanaee, B. Jafarkhani, M. Eghbali, H.H.H. Zanjani, S.M.H. Hashemi, S.M. Rahimnia, Passive Targeted Drug Delivery of Venlafaxine HCl to the Brain by Modified Chitosan Nanoparticles: Characterization, Cellular Safety Assessment, and In Vivo Evaluation, J Pharm Innov 18 (2023) 1441–1453. https://doi.org/10.1007/s12247-023-09733-6.

E.S. Behbahani, M. Ghaedi, M. Abbaspour, K. Rostamizadeh, Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques, UltrasonicsSonochemistry 38 (2017) 271–280. https://doi.org/10.1016/j.ultsonch.2017.03.013.

E. Taha, S.A. Nour, W. Mamdouh, A.A. Selim, M.M. Swidan, A.B. Ibrahim, M.J. Naguib, Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, in vitro optimization, ex vivo cytotoxicity & in vivo biodistribution utilizing radioiodinatedzopiclone, International Journal of Pharmaceutics: X 5 (2023) 100160. https://doi.org/10.1016/j.ijpx.2023.100160.

A. Vikas, P. Rashmin, P. Mrunali, M. Sandip, T. Kaushik, RP-HPLC method for quantitative estimation of Efinaconazole in topical microemulsion and microemulsion-based-gel formulations and in presence of its degradation products, Microchemical Journal 155 (2020) 104753. https://doi.org/10.1016/j.microc.2020.104753.

N.K. Garg, N. Tandel, S.K. Bhadada, R.K. Tyagi, Nanostructured Lipid Carrier–Mediated Transdermal Delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory Diseases, Front. Pharmacol.12 (2021) 713616. https://doi.org/10.3389/fphar.2021.713616.

S. Kalepu, M. Manthina, V. Padavala, Oral lipid-based drug delivery systems – an overview, ActaPharmaceuticaSinica B 3 (2013) 361–372. https://doi.org/10.1016/j.apsb.2013.10.001.

A.C. Silva, E. González-Mira, M.L. García, M.A. Egea, J. Fonseca, R. Silva, D. Santos, E.B. Souto, D. Ferreira, Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound, Colloids and Surfaces B: Biointerfaces 86 (2011) 158–165. https://doi.org/10.1016/j.colsurfb.2011.03.035.

S. Das, A.B.H. Wong, Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization, Sci Rep 10 (2020) 12288. https://doi.org/10.1038/s41598-020-68732-6.

V. Agrawal, R. Patel, M. Patel, K. Thanki, S. Mishra, Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies, Colloids and Surfaces B: Biointerfaces 201 (2021) 111652. https://doi.org/10.1016/j.colsurfb.2021.111652.

S.S. Patil, P. Khulbe, M.M. Nitalikar, K. Das, M. B.P., S. Alshehri, A.M.S. Khormi, M.E.M. Almalki, S.A. Hussain, S.I. Rabbani, S.M.B. Asdaq, Development of topical silver nano gel formulation of Bixin: Characterization, and evaluation of anticancer activity, Saudi Pharmaceutical Journal 32 (2024) 102125. https://doi.org/10.1016/j.jsps.2024.102125.

A. Ahad, Mohd. Aqil, A. Ali, Investigation of antihypertensive activity of carbopol valsartan transdermal gel containing 1,8-cineole, International Journal of Biological Macromolecules 64 (2014) 144–149. https://doi.org/10.1016/j.ijbiomac.2013.11.018.

Y. Bachhav, V. Patravale, Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation, International Journal of Pharmaceutics 365 (2009) 175–179. https://doi.org/10.1016/j.ijpharm.2008.08.021.

Indian Pharmacopoeia, 4.2. General Reagents 1 (2022) 563.

F. Han, R. Yin, X. Che, J. Yuan, Y. Cui, H. Yin, S. Li, Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation, International Journal of Pharmaceutics 439 (2012) 349–357. https://doi.org/10.1016/j.ijpharm.2012.08.040.

S.K. Sadozai, S.A. Khan, A. Baseer, R. Ullah, A. Zeb, M. Schneider, In Vitro, Ex Vivo, and In Vivo Evaluation of Nanoparticle-Based Topical Formulation Against Candida albicans Infection, Front. Pharmacol.13 (2022) 909851. https://doi.org/10.3389/fphar.2022.909851.

E. Sieniawska, Ł. Świątek, M. Wota, B. Rajtar, M. Polz-Dacewicz, Microemulsions of essentials oils – Increase of solubility and antioxidant activity or cytotoxicity?, Food and Chemical Toxicology 129 (2019) 115–124. https://doi.org/10.1016/j.fct.2019.04.038.

H. Kansagra, S. Mallick, Microemulsion-based antifungal gel of luliconazole for dermatophyte infections: formulation, characterization and efficacy studies, Journal of Pharmaceutical Investigation 46 (2016) 21–28. https://doi.org/10.1007/s40005-015-0209-9.

K. Krambeck, V. Silva, R. Silva, C. Fernandes, F. Cagide, F. Borges, D. Santos, F. Otero-Espinar, J.M.S. Lobo, M.H. Amaral, Design and characterization of Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels containing Passifloraedulis seeds oil, International Journal of Pharmaceutics 600 (2021) 120444. https://doi.org/10.1016/j.ijpharm.2021.120444.

E.B. Souto, S.A. Wissing, C.M. Barbosa, R.H. Müller, Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery, International Journal of Pharmaceutics 278 (2004) 71–77. https://doi.org/10.1016/j.ijpharm.2004.02.032.

E. Esposito, M. Drechsler, R. Cortesi, C. Nastruzzi, Encapsulation of cannabinoid drugs in nanostructured lipid carriers, European Journal of Pharmaceutics and Biopharmaceutics 102 (2016) 87–91. https://doi.org/10.1016/j.ejpb.2016.03.005.

M. Nosratabadi, S.M. Rahimnia, R.E. Barogh, M. Abastabar, I. Haghani, J. Akhtari, Z. Hajheydari, P. Ebrahimnejad, Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains, Sci Rep 14 (2024) 30708. https://doi.org/10.1038/s41598-024-79225-1.

S.R. Castro, L.N.M. Ribeiro, M.C. Breitkreitz, V.A. Guilherme, G.H. Rodrigues Da Silva, H. Mitsutake, A.C.S. Alcântara, F. Yokaichiya, M.K.K.D. Franco, D. Clemens, B. Kent, M. Lancellotti, D.R. De Araújo, E. De Paula, A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers, Sci Rep 11 (2021) 21463. https://doi.org/10.1038/s41598-021-99743-6.

A.B. Nair, B. Aldhubiab, J. Shah, S. Jacob, M. Attimarad, N. Sreeharsha, K.N. Venugopala, A. Joseph, M.A. Morsy, Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole, Pharmaceutics 15 (2023) 1422. https://doi.org/10.3390/pharmaceutics15051422.

Shamim, T. Ali, Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals, PNT 13 (2024). https://doi.org/10.2174/0122117385319695240911115239.

P. Borah, S. Hazarika, D. Sharma, K.N. Venugopala, D. Chopra, N.A. Al-Shar’i, S. Hemalatha, A.K. Shakya, P. Chandra Acharya, P.K. Deb, Systemic and topical antifungal drugs, in: Medicinal Chemistry of Chemotherapeutic Agents, Elsevier, 2023: pp. 285–315. https://doi.org/10.1016/B978-0-323-90575-6.00002-8.

sandrawati, In vitro cytotoxic activity assay of bacteria extract derived marine sponge Haliclonafascigera toward Hela, WiDr, T47D, and Vero cell line, J App Pharm Sci 9 (2019) 66–70. https://doi.org/10.7324/JAPS.2019.90809.

P. Mittal, M. Singla, Smriti, R. Kapoor, D. Kumar, S. Gupta, G. Gupta, T. Bhattacharya, Paclitaxel loaded Capmul MCM and tristearin based nanostructured lipid carriers (NLCs) for glioblastoma treatment: screening of formulation components by quality by design (QbD) approach, Discover Nano 19 (2024) 175. https://doi.org/10.1186/s11671-024-04132-3.

C. Comby-Zerbino, X. Dagany, F. Chirot, P. Dugourd, R. Antoine, The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond, Mater. Adv. 2 (2021) 4896–4913. https://doi.org/10.1039/D1MA00261A.

R. Aggarwal, M. Targhotra, P.K. Sahoo, M.K. Chauhan, Efinaconazole nail lacquer for the transungual drug delivery: Formulation, optimization, characterization and in vitro evaluation, Journal of Drug Delivery Science and Technology 60 (2020) 101998. https://doi.org/10.1016/j.jddst.2020.101998.

C. Khot, K. Kolekar, S. Dabhole, A. Mohite, S. Nadaf, P.S. Kumbhar, J. Disouza, Optimized albendazole-loaded nanostructured lipid carrier gel: a redefined approach for localized skin cancer treatment, RSC Pharm. 1 (2024) 1042–1054. https://doi.org/10.1039/D4PM00207E.

K. A, S. Sk, D. M, K. R, Y. Ak, K. V, C. H, Development and Validation of Liquid Chromatography (RP-HPLC) Methodology for Estimation of EfonidipineHClEthanolate (EFD), Pharm Anal Acta 08 (2017). https://doi.org/10.4172/2153-2435.1000547.

A. Kumar, P. Saharan, S. Kumar, Eco-friendly RP-HPLC method development and validation for simultaneous determination of triazole antifungal agent and benzyl alcohol in nanostructured lipid carrier-based bulk and gel formulations, J Neonatal Surg 14 (2025) 757–777. https://jneonatalsurg.com/index.php/jns/article/view/2951.

S. Brito Raj, K.B. Chandrasekhar, K.B. Reddy, Formulation, in-vitro and in-vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system, Futur J Pharm Sci 5 (2019) 9. https://doi.org/10.1186/s43094-019-0008-7.

D. Verma, P.S. Thakur, S. Padhi, T. Khuroo, S. Talegaonkar, Z. Iqbal, Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: Optimization, in vitro characterization and stability assessment, Journal of Molecular Liquids 242 (2017) 382–394. https://doi.org/10.1016/j.molliq.2017.07.002.

T. Alam, Quality by design based development of nanostructured lipid carrier: a risk based approach, Exploration of Medicine (2022) 617–638. https://doi.org/10.37349/emed.2022.00118.

S. Bhattacharya, Central Composite Design for Response Surface Methodology and Its Application in Pharmacy, in: P. Kayaroganam (Ed.), Response Surface Methodology in Engineering Science, IntechOpen, 2021. https://doi.org/10.5772/intechopen.95835.

H. Hassan, S.K. Adam, E. Alias, M.M.R. MeorMohdAffandi, A.F. Shamsuddin, R. Basir, Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir, Molecules 26 (2021) 5432. https://doi.org/10.3390/molecules26185432.

Downloads

Published

2025-04-23

How to Cite

1.
Kumar A, Singh A, Kumar S. Development and optimization of efinaconazole-loaded nanostructured lipid carriers: Enhanced antifungal efficacy and skin penetration for topical treatment of superficial fungal infections. J Neonatal Surg [Internet]. 2025Apr.23 [cited 2025Oct.10];14(16S):843-66. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/4483

Most read articles by the same author(s)