In Silico and Analytical Evaluation of Beta-Sitosterol From Anogeissus Pendula As A Potential Therapeutic Agent Against Hyperlipidemia
Abstract
Hyperlipidemia, one of the main causes of cardiovascular disease, is characterized by elevation of lipids that can cause atherosclerosis and coronary artery disease. Although standard pharmaceuticals like statins and fibrates may work, their potential side effects urge the search for safer, cost-effective ones from natural sources. Medicinal plants such as Anogeissus pendula, a plant with many bioactive compounds have gained much attention because of their metabolic activities particularly for the Beta-Sitosterol presence. This plant sterol, which has a similar chemical structure to cholesterol, reduces lipid levels by blocking intestinal cholesterol absorption and modulates the major lipid metabolism pathways. In silico and analytical approaches are used in the present study to evaluate the therapeutic potential of Beta-Sitosterol isolated from A. pendula. Its high binding affinity with lipid-regulating enzymes including HMG-CoA reductase and PPAR-α indicated by molecular docking and ADMET prediction, its targeting lipid metabolism critical pathways as revealed by network pharmacology. Additionally, chromatographic analyses confirmed that its concentration in A. pendula extracts was exceedingly high, and further complemented its pharmacological relevance. The results render Beta-Sitosterol as a potentially efficacious natural agent for lipid reduction, a new hope for non-traditional lipid-lowering drugs, and worthy of future in vivo and clinical investigations
Downloads
Metrics
References
.Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim Care 2012, 40, 195, doi:10.1016/J.POP.2012.11.003.
Kris-Etherton, P.M.; Sanders, L.; Lawler, O.; Riley, T.; Maki, K. Hyperlipidemia. Encyclopedia of Human Nutrition: Volume 1-4, Fourth Edition 2023, 1–4, 361–379, doi:10.1016/B978-0-12-821848-8.00175-X.
Chhetry, M.; Jialal, I. Lipid-Lowering Drug Therapy. StatPearls 2023.
Selva-O’Callaghan, A.; Alvarado-Cardenas, M.; Pinal-Fernández, I.; Trallero-Araguás, E.; Milisenda, J.C.; Martínez, M.Á.; Marín, A.; Labrador-Horrillo, M.; Juárez, C.; Grau-Junyent, J.M. Statin-Induced Myalgia and Myositis: An Update on Pathogenesis and Clinical Recommendations. Expert Rev Clin Immunol 2018, 14, 215, doi:10.1080/1744666X.2018.1440206.
Singh, D.; Baghel, U.S.; Gautam, A.; Baghel, D.S.; Yadav, D.; Malik, J.; Yadav, R. The Genus Anogeissus: A Review on Ethnopharmacology, Phytochemistry and Pharmacology. J Ethnopharmacol 2016, 194, 30–56, doi:10.1016/J.JEP.2016.08.025.
Laka, K.; Makgoo, L.; Mbita, Z. Cholesterol-Lowering Phytochemicals: Targeting the Mevalonate Pathway for Anticancer Interventions. Front Genet 2022, 13, 841639, doi:10.3389/FGENE.2022.841639.
Lomenick, B.; Shi, H.; Huang, J.; Chen, C. Identification and Characterization of β-Sitosterol Target Proteins. Bioorg Med Chem Lett 2015, 25, 4976, doi:10.1016/J.BMCL.2015.03.007.
Shahdaat, M.; Sayeed, B.; Muhammad, S.; Karim, R.; Sharmin, T.; Morshed, M.M. Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicines 2016, 3, 29, doi:10.3390/MEDICINES3040029.
Ferri, N.; Ruscica, M.; Fazio, S.; Corsini, A. Low-Density Lipoprotein Cholesterol-Lowering Drugs: A Narrative Review. Journal of Clinical Medicine 2024, Vol. 13, Page 943 2024, 13, 943, doi:10.3390/JCM13040943.
Dumolt, J.H.; Rideout, T.C. The Lipid-Lowering Effects and Associated Mechanisms of Dietary Phytosterol Supplementation. Curr Pharm Des 2017, 23, 5077, doi:10.2174/1381612823666170725142337.
Dwivedi, J.; Wal, P.; Sachan, P.; Dwivedi, M.; Gunjal, S.D.; Wasnik, U.; Singhai, A. Aspects of β-Sitosterol’s Pharmacology, Nutrition and Analysis. Curr Pharm Biotechnol 2024, 26, doi:10.2174/0113892010313844240905055119.
Zeng, B.; Qi, L.; Wu, S.; Liu, N.; Wang, J.; Nie, K.; Xia, L.; Yu, S. Network Pharmacology Prediction and Metabolomics Validation of the Mechanism of Fructus Phyllanthi against Hyperlipidemia. J Vis Exp 2023, 2023, doi:10.3791/65071.
Kumar, A.; Rajput, D.; Gupta, N.; Singh, H.; Chopra, S.; Chopra, H. In Silico Identification of Promising PDE5 Inhibitors Against Hepatocellular Carcinoma Among Natural Derivatives: A Study Involving Docking and ADMET Analysis. Drug Res 2025, 75, 21–33, doi:10.1055/A-2435-4709.
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports 2017 7:1 2017, 7, 1–13, doi:10.1038/srep42717.
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem 2015, 58, 4066–4072, doi:10.1021/ACS.JMEDCHEM.5B00104/SUPPL_FILE/JM5B00104_SI_001.PDF.
Cao, W.; Yuan, F.; Liu, T.; Yin, R. Network Pharmacology Analysis, Molecular Docking Integrated Experimental Verification Reveal β-Sitosterol as the Active Anti-NSCLC Ingredient of Polygonatum Cyrtonema Hua by Suppression of PI3K/Akt/HIF-1α Signaling Pathway. J Ethnopharmacol 2024, 328, doi:10.1016/J.JEP.2024.117900.
Kumar, A.; Singh Rajput, D.; Gupta, N. In Silico Identification of Promising PDE5 Inhibitors Against Hepatocellular Carcinoma among Recently FDA Approved Drug: A Docking and ADMET Study. Journal of Chemical Health Risks 2024, 14, 280–291, doi:10.52783/JCHR.V14.I3.4394.
Sahu, M.; Sinha, M.; Rao, I.A.; Sallawad, S.S.; Ahirwar, B. A Study of Variation in Ball Point Ink of Different Brands by Thin Layer Chromatography. Res J Pharm Technol 2017, 10, 4261–4263, doi:10.5958/0974-360X.2017.00780.6.
Zhi, K.; Wang, J.; Zhao, H.; Yang, X. Self-Assembled Small Molecule Natural Product Gel for Drug Delivery: A Breakthrough in New Application of Small Molecule Natural Products. Acta Pharm Sin B 2019, 10, 913, doi:10.1016/J.APSB.2019.09.009.
Elhady, S.S.; Ibrahim, E.A.; Goda, M.S.; Nafie, M.S.; Samir, H.; Diri, R.M.; Alahdal, A.M.; Thomford, A.K.; El Gindy, A.; Hadad, G.M.; et al. GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia Sanguinea. Molecules 2022, 27, doi:10.3390/MOLECULES27134109.
Zhu, Y.; Chen, L.; Guo, Y.; Gao, P.; Liu, S.; Zhang, T.; Zhang, G.; Xie, K. Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry. Foods 2024, 13, 119, doi:10.3390/FOODS13010119/S1.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.