Predictive Analysis for Cardiovascular Outcomes Using Ai

Authors

  • Albatoul Khaled
  • Avrina Kartika Ririe
  • Mandeep Kaur
  • Sahil Kumar
  • Newton Rahming
  • Rahif Khaled
  • Amine Hamdache
  • Abdelilah Jraifi
  • Ilias Elmouki

DOI:

https://doi.org/10.63682/jns.v14i24S.5911

Keywords:

N\A

Abstract

Background

Cardiovascular diseases (CVD) continue to be one of the leading causes of deaths globally meaning that risk evaluation and predictive efforts need to start early to ensure proper management is done. The goal of this study is to conduct quantitative predictive analysis to find key predictive risk factors with the aid of machine learning models in hopes of improving cardiovascular outcomes.

Methods

A cross-sectional survey design was employed by reaching out to 273 respondents through a standardized questionnaire. Together with demographic factors, lifestyle, and medical history information about the respondents that is relevant to the risk of CVD was collected as well. Other tests that were performed include normality tests (Shapiro-Wilk), reliability tests (Cronbach’s Alpha), and correlational tests. The data was predictively modeled using Logistic Regression, Random Forest, and Decision Tree classifier models evaluated based on accuracy, precision, recall, and F1 score.

 

Results

The normality test proved that the continuous variables of height, weight, and BMI do indeed support and conform to a normal distribution. The test also suggests there is a low internal consistency which is led by the low Cronbach’s alpha value of 0.037 meaning that cardiovascular risk assessment is multidimensional. The results of predictive modeling were overall relatively low and failed to be predicted reliably but random forest achieved the highest performance as expected (accuracy: 16.36%) though was still much too low. Class imbalance and lack of predictive features are likely causes of model performance.

Conclusion

The results underscore the difficulties associated with estimating cardiovascular outcomes with the traditional machine learning models. The study points out that incorporating advanced feature selection, bigger datasets, and more sophisticated AI tools like deep learning and real-time information from wearables is essential. Although these models are imperfect, AI-based predictive analytics provide a chance for integrating early cardiovascular disease risk stratification and tailored interventions in medicine. More work needs to be done in preprocessing the data, class imbalance, and ensemble techniques to improve the accuracy of predictions and effectiveness in clinical medicine

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmed, A., Khaled, A., Waqar, M., Hashmi, D. J. A., Alfanash, H. A., Almagharbeh, W. T., Hamdache, A., & Elmouki, I. (2024). AI-Driven Early Detection of Cardiovascular Diseases: Reducing Healthcare Costs and Improving. South Eastern European Journal of Public Health. Vol.25 No.S2, December 2024: P. 3591-3603.

Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H., & Van der Schaar, M. (2019). Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PloS one, 14(5), e0213653.

Aminian, A., Zajichek, A., Arterburn, D. E., Wolski, K. E., Brethauer, S. A., Schauer, P. R., Kattan, M. W., & Nissen, S. E. (2019). Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. Jama, 322(13), 1271-1282.

Arnaud, C., Bochaton, T., Pépin, J.-L., & Belaidi, E. (2020). Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Archives of cardiovascular diseases, 113(5), 350-358.

Bernasconi, A. A., Wiest, M. M., Lavie, C. J., Milani, R. V., & Laukkanen, J. A. (2021). Effect of omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of interventional trials. Mayo Clinic Proceedings,

Bouabdallaoui, N., Tardif, J.-C., Waters, D. D., Pinto, F. J., Maggioni, A. P., Diaz, R., Berry, C., Koenig, W., Lopez-Sendon, J., & Gamra, H. (2020). Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). European Heart Journal, 41(42), 4092-4099.

Dev, S., Wang, H., Nwosu, C. S., Jain, N., Veeravalli, B., & John, D. (2022). A predictive analytics approach for stroke prediction using machine learning and neural networks. Healthcare Analytics, 2, 100032.

Filippatos, G., Anker, S. D., Agarwal, R., Pitt, B., Ruilope, L. M., Rossing, P., Kolkhof, P., Schloemer, P., Tornus, I., & Joseph, A. (2021). Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation, 143(6), 540-552.

Flint, A. C., Conell, C., Ren, X., Banki, N. M., Chan, S. L., Rao, V. A., Melles, R. B., & Bhatt, D. L. (2019). Effect of systolic and diastolic blood pressure on cardiovascular outcomes. New England Journal of Medicine, 381(3), 243-251.

Gilchrist, S. C., Barac, A., Ades, P. A., Alfano, C. M., Franklin, B. A., Jones, L. W., La Gerche, A., Ligibel, J. A., Lopez, G., & Madan, K. (2019). Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation, 139(21), e997-e1012.

Ji, H., Niiranen, T. J., Rader, F., Henglin, M., Kim, A., Ebinger, J. E., Claggett, B., Merz, C. N. B., & Cheng, S. (2021). Sex differences in blood pressure associations with cardiovascular outcomes. Circulation, 143(7), 761-763.

Kelshiker, M. A., Seligman, H., Howard, J. P., Rahman, H., Foley, M., Nowbar, A. N., Rajkumar, C. A., Shun-Shin, M. J., Ahmad, Y., & Sen, S. (2022). Coronary flow reserve and cardiovascular outcomes: a systematic review and meta-analysis. European Heart Journal, 43(16), 1582-1593.

Khan, S. U., Khan, M. U., Riaz, H., Valavoor, S., Zhao, D., Vaughan, L., Okunrintemi, V., Riaz, I. B., Khan, M. S., & Kaluski, E. (2019). Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: an umbrella review and evidence map. Annals of Internal Medicine, 171(3), 190-198.

Kim, M. S., Kim, W. J., Khera, A. V., Kim, J. Y., Yon, D. K., Lee, S. W., Shin, J. I., & Won, H.-H. (2021). Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. European Heart Journal, 42(34), 3388-3403.

Krittanawong, C., Virk, H. U. H., Bangalore, S., Wang, Z., Johnson, K. W., Pinotti, R., Zhang, H., Kaplin, S., Narasimhan, B., & Kitai, T. (2020). Machine learning prediction in cardiovascular diseases: a meta-analysis. Scientific reports, 10(1), 16057.

Lees, J. S., Welsh, C. E., Celis-Morales, C. A., Mackay, D., Lewsey, J., Gray, S. R., Lyall, D. M., Cleland, J. G., Gill, J. M., & Jhund, P. S. (2019). Glomerular filtration rate by differing measures, albuminuria, and prediction of cardiovascular disease, mortality, and end-stage kidney disease. Nature medicine, 25(11), 1753-1760.

Lim, H. M., Chia, Y. C., Ching, S. M., & Chinna, K. (2019). Number of blood pressure measurements needed to estimate long-term visit-to-visit systolic blood pressure variability for predicting cardiovascular risk: a 10-year retrospective cohort study in a primary care clinic in Malaysia. BMJ open, 9(4), e025322.

Lincoff, A. M., Brown-Frandsen, K., Colhoun, H. M., Deanfield, J., Emerson, S. S., Esbjerg, S., Hardt-Lindberg, S., Hovingh, G. K., Kahn, S. E., & Kushner, R. F. (2023). Semaglutide and cardiovascular outcomes in obesity without diabetes. New England Journal of Medicine, 389(24), 2221-2232.

Liu, C., Dhindsa, D., Almuwaqqat, Z., Ko, Y.-A., Mehta, A., Alkhoder, A. A., Alras, Z., Desai, S. R., Patel, K. J., & Hooda, A. (2022). Association between high-density lipoprotein cholesterol levels and adverse cardiovascular outcomes in high-risk populations. JAMA cardiology, 7(7), 672-680.

Mackenzie, I. S., Rogers, A., Poulter, N. R., Williams, B., Brown, M. J., Webb, D. J., Ford, I., Rorie, D. A., Guthrie, G., & Grieve, J. K. (2022). Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): a prospective, randomized, open-label, blinded-endpoint clinical trial. The Lancet, 400(10361), 1417-1425.

Matsushita, K., Ballew, S. H., Wang, A. Y.-M., Kalyesubula, R., Schaeffner, E., & Agarwal, R. (2022). Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nature Reviews Nephrology, 18(11), 696-707.

Mazzotti, D. R., Keenan, B. T., Lim, D. C., Gottlieb, D. J., Kim, J., & Pack, A. I. (2019). Symptom subtypes of obstructive sleep apnea predict the incidence of cardiovascular outcomes. American journal of respiratory and critical care medicine, 200(4), 493-506.

Ramesh, T., Lilhore, U. K., Poongodi, M., Simaiya, S., Kaur, A., & Hamdi, M. (2022). Predictive analysis of heart diseases with machine learning approaches. Malaysian Journal of Computer Science, 132-148.

Ren, J., Liu, D., Li, G., Duan, J., Dong, J., & Liu, Z. (2022). Prediction and risk stratification of cardiovascular disease in diabetic kidney disease patients. Frontiers in Cardiovascular Medicine, 9, 923549.

Rosenstock, J., Kahn, S. E., Johansen, O. E., Zinman, B., Espeland, M. A., Woerle, H. J., Pfarr, E., Keller, A., Mattheus, M., & Baanstra, D. (2019). Effect of linagliptin vs glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: the CAROLINA randomized clinical trial. Jama, 322(12), 1155-1166.

Sheahan, K. H., Wahlberg, E. A., & Gilbert, M. P. (2020). An overview of GLP-1 agonists and recent cardiovascular outcomes trials. Postgraduate medical journal, 96(1133), 156-161.

Wang, L., Cong, H.-l., Zhang, J.-x., Hu, Y.-c., Wei, A., Zhang, Y.-y., Yang, H., Ren, L.-b., Qi, W., & Li, W.-y. (2020). The triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome. Cardiovascular diabetology, 19, 1-11.

Wong, N. D., & Sattar, N. (2023). Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nature Reviews Cardiology, 20(10), 685-695.

Wu, M., Yu, X., Xu, L., Wu, S., & Tian, Y. (2022). Associations of longitudinal trajectories in body roundness index with mortality and cardiovascular outcomes: a cohort study. The American journal of clinical nutrition, 115(3), 671-678.

Yang, L., Magnussen, C. G., Yang, L., Bovet, P., & Xi, B. (2020). Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review. Hypertension, 75(4), 948-955.

Zurbau, A., Au‐Yeung, F., Blanco Mejia, S., Khan, T. A., Vuksan, V., Jovanovski, E., Leiter, L. A., Kendall, C. W., Jenkins, D. J., & Sievenpiper, J. L. (2020). Relation of different fruit and vegetable sources with incident cardiovascular outcomes: a systematic review and meta‐analysis of prospective cohort studies. Journal of the American Heart Association, 9(19), e017728..

...

Downloads

Published

2025-05-15

How to Cite

1.
Khaled A, Ririe AK, Kaur M, Kumar S, Rahming N, Khaled R, Hamdache A, Jraifi A, Elmouki I. Predictive Analysis for Cardiovascular Outcomes Using Ai. J Neonatal Surg [Internet]. 2025May15 [cited 2025Sep.20];14(24S):147-5. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5911

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.