Role Of Halophilic Microorganisms in the Bioremediation of Salt-Affected Soils

Authors

  • Patil Priyadarshani Anandrao
  • Aparna Pathade
  • Girish Pathade

Keywords:

Halophilic microorganisms, saline soils, bio-remediation, halo tolerance

Abstract

The biology that supports and restores higher creatures is influenced by the bacteria that live in the soil. Many different halophilic and halotolerant microorganisms, spanning numerous evolutionary groupings, predominate in the salt-affected soil types. When plants are stressed by salt, these bacteria may be able to promote plant development and release enzymes. Since plant growth is inhibited in high salinity soils, halophiles have the potential to improve plant growth and yield in salinity-affected soils. Recent study has highlighted the value of this environmentally benign method of using halophiles to bioremediate salt-affected soils and maximize crop yields under stress.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aliasgharzadeh, N., Rastin, S. N., Towfighi, H., & Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11, 119-122.

Amoozegar, M. A., Malekzadeh, F., Malik, K. A., Schumann, P., & Sproer, C. (2003). Halobacillus karajensis sp. nov., a novel moderate halophile. International journal of systematic and evolutionary microbiology, 53(4), 1059-1063.

Amoozegar, M. A., Malekzadeh, F., Malik, K. A., Schumann, P., & Sproer, C. (2003). Halobacillus karajensis sp. nov., a novel moderate halophile. International journal of systematic and evolutionary microbiology, 53(4), 1059-1063.

Arora, S., Patel, P. N., Vanza, M. J., & Rao, G. G. (2014). Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res, 8(17), 1779-1788.

Arora, S., Singh, Y. P., & Sahni, D. (2021). Halophilic microbial bioformulations for bioremediation of salt-affected soils. In Biofertilizers (pp. 301-311). Woodhead Publishing.

Bhuva, C. G., Arora, S., & Rao, G. G. (2013). Efficacyof halophilic microbes for salt removal from coastal saline soils.

Bouchotroch, S., Quesada, E., del Moral, A., Llamas, I., & Bejar, V. (2001). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 51(5), 1625-1632.

Ranbir Chhabra, R. C. (1996). Soil salinity and water quality. Oxford & IBH Publishing Co., New Delhi.

Cui, X. L., Mao, P. H., Zeng, M., Li, W. J., Zhang, L. P., Xu, L. H., & Jiang, C. L. (2001). Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. International Journal of Systematic and Evolutionary Microbiology, 51(2), 357-363.

DasSarma, S., & Arora, P. (2001). Halophiles. e LS. DOI: 10.1038/npg.els.0004356.

Degens, B. P., Schipper, L. A., Sparling, G. P., & Vojvodic-Vukovic, M. (2000). Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology and Biochemistry, 32(2), 189-196.

Dundas, I. (1998). Was the environment for primordial life hypersaline?. Extremophiles, 2, 375-377.

Echigo, A., Hino, M., Fukushima, T., Mizuki, T., Kamekura, M., & Usami, R. (2005). Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline systems, 1, 1-13.

Garabito, M. J., Márquez, M. C., & Ventosa, A. (1998). Halotolerant Bacillus diversity in hypersaline environments. Canadian journal of microbiology, 44(2), 95-102.

García, M. T., Mellado, E., Ostos, J. C., & Ventosa, A. (2004). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1723-1728.

Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., & Bertrand, J. C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 42(4), 568-576.

Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., ... & Christen, R. (2003). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. International Journal of Systematic and Evolutionary Microbiology, 53(6), 2073-2078.

Gunde-Cimerman, N., Ramos, J., & Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological research, 113(11), 1231-1241.

VAN HAO, M. A. I., KOCUR, M., & KOMAGATA, K. (1984). Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. The Journal of General and Applied Microbiology, 30(6), 449-459.

Heyrman, J., Logan, N. A., Busse, H. J., Balcaen, A., Lebbe, L., Rodriguez-Diaz, M., ... & De Vos, P. (2003). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. International journal of systematic and evolutionary microbiology, 53(2), 501-511.

Jeon, C. O., Lim, J. M., Lee, J. C., Lee, G. S., Lee, J. M., Xu, L. H., ... & Kim, C. J. (2005). Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. International journal of systematic and evolutionary microbiology, 55(3), 1339-1343.

Juniper, S., & Abbott, L. (1993). Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4, 45-57.

Juniper, S., & Abbott, L. K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371-379.

Khan, A. G., & Belik, M. (1995). Occurence and ecological significance of mycorrhizal symbiosis in aquatic plants. In Mycorrhiza: structure, function, molecular biology and biotechnology (pp. 627-666). Berlin, Heidelberg: Springer Berlin Heidelberg.

Kim, B. Y., Weon, H. Y., Yoo, S. H., Kim, J. S., Kwon, S. W., Stackebrandt, E., & Go, S. J. (2006). Marinobacter koreensis sp. nov., isolated from sea sand in Korea. International journal of systematic and evolutionary microbiology, 56(11), 2653-2656.

Kushner, D. J. (2020). Growth and nutrition of halophilic bacteria. In The biology of halophilic bacteria (pp. 87-103). CRC Press.

Landwehr, M., Hildebrandt, U., Wilde, P., Nawrath, K., Tóth, T., Biró, B., & Bothe, H. (2002). The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 12, 199-211.

Lee, J. S., Lim, J. M., Lee, K. C., Lee, J. C., Park, Y. H., & Kim, C. J. (2006). Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. International journal of systematic and evolutionary microbiology, 56(1), 251-257.

Li, W. J., Kroppenstedt, R. M., Wang, D., Tang, S. K., Lee, J. C., Park, D. J., ... & Jiang, C. L. (2006). Five novel species of the genus Nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina Li et al. 2004. International journal of systematic and evolutionary microbiology, 56(5), 1089-1096.

Li, W. J., Schumann, P., Zhang, Y. Q., Chen, G. Z., Tian, X. P., Xu, L. H., ... & Jiang, C. L. (2005). Marinococcus halotolerans sp. nov., isolated from Qinghai, north-west China. International journal of systematic and evolutionary microbiology, 55(5), 1801-1804.

Liang, Y. U., Chen, H. U. I., Tang, M., & Shen, S. (2007). Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock. mycological research, 111(8), 939-946.

Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil biology and Biochemistry, 33(11), 1437-1445.

Martin, S., Márquez, M. C., Sánchez-Porro, C., Mellado, E., Arahal, D. R., & Ventosa, A. (2003). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1383-1387.

Martínez-Cánovas, M. J., Bejar, V., Martínez-Checa, F., & Quesada, E. (2004). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Malaga, southern Spain. International journal of systematic and evolutionary microbiology, 54(4), 1329-1332.

Mevarech, M., Frolow, F., & Gloss, L. M. (2000). Halophilic enzymes: proteins with a grain of salt. Biophysical chemistry, 86(2-3), 155-164.

Meyer, J. (1976). Nocardiopsis, a new genus of the order Actinomycetales. International Journal of Systematic and Evolutionary Microbiology, 26(4), 487-493.

Miethling, R., Wieland, G., Backhaus, H., & Tebbe, C. C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial ecology, 40, 43-56.

Nieto, J. J., Fernandez-Castillo, R., Marquez, M. C., Ventosa, A., Quesada, E., & Ruiz-Berraquero, F. (1989). Survey of metal tolerance in moderately halophilic eubacteria. Applied and Environmental Microbiology, 55(9), 2385-2390.

Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement, 15(2).

Ojala, J. C., Jarrell, W. M., Menge, J. A., & Johnson, E. L. V. (1983). Influence of Mycorrhizal Fungi on the Mineral Nutrition and Yield of Onion in Saline Soil 1. Agronomy Journal, 75(2), 255-259.

Olivera, N., Sineriz, F., & Breccia, J. D. (2005). Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. International Journal of Systematic and Evolutionary Microbiology, 55(1), 443-447.

Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and molecular biology reviews, 63(2), 334-348.

Oren, A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology, 28(1), 56-63.

Plemenitaš, A., Lenassi, M., Konte, T., Kejžar, A., Zajc, J., Gostinčar, C., & Gunde-Cimerman, N. (2014). Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Frontiers in microbiology, 5, 199.

Pond, E. C., Menge, J. A., & Jarrell, W. M. (1984). Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 76(1), 74-84.

Porras-Soriano, A., Soriano-Martín, M. L., Porras-Piedra, A., & Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of plant physiology, 166(13), 1350-1359.

Quesada, E., Ventosa, A., Rodriguez-Valera, F., Megias, L., & Ramos-Cormenzana, A. (1983). Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. Microbiology, 129(8), 2649-2657.

Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T., & Delgado, O. (2004). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. International journal of systematic and evolutionary microbiology, 54(3), 721-725.

Ramos-Cormenzana, A. (2020). Ecology of moderately halophilic bacteria. In The biology of halophilic bacteria (pp. 55-86). CRC Press.

Razzaq, A., Ali, A., Safdar, L. B., Zafar, M. M., Rui, Y., Shakeel, A., ... & Yuan, Y. (2020). Salt stress induces physiochemical alterations in rice grain composition and quality. Journal of food science, 85(1), 14-20.Rios M, Nieto JJ, Ventosa A (1998). Numerical taxonomy of heavy metal-tolerant nonhalophilic bacteria isolated from hypersaline environments. Int. J. Microbiol. 1: 45–51.

Rodriguez-Valera, F. (1988). Characteristics and microbial ecology of hypersaline environments. Halophilic bacteria, 1, 3-30.

Rodriguez-Valera, F. (2020). Introduction to saline environments. In The biology of halophilic bacteria (pp. 1-23). CRC Press.

Romanenko, L. A., Schumann, P., Rohde, M., Zhukova, N. V., Mikhailov, V. V., & Stackebrandt, E. (2005). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. International journal of systematic and evolutionary microbiology, 55(1), 143-148.

Ross, I. L., Alami, Y., Harvey, P. R., Achouak, W., & Ryder, M. H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66(4), 1609-1616.

Russell, R. S. (1977). Plant root systems: their function and interaction with the soil (p. 298pp).

Babu, M. M., Murugan, M., & Raj, S. T. (2011). Survey on Halophilic microbial diversity of Kovalam Saltpans in Kanyakumari District and its industrial applications. Journal of Applied Pharmaceutical Science, (Issue), 160-163.

Saum, S. H., Pfeiffer, F., Palm, P., Rampp, M., Schuster, S. C., Müller, V., & Oesterhelt, D. (2013). Chloride and organic osmolytes: a hybrid strategy to cope with elevated salinities by the moderately halophilic, chloride‐dependent bacterium Halobacillus halophilus. Environmental Microbiology, 15(5), 1619-1633.

Shivanand, P., & Mugeraya, G. (2011). Halophilic bacteria and their compatible solutes–osmoregulation and potential applications. Current science, 1516-1521.

Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A., & Schleifer, K. H. (1996). Halobacillus gen. nov., with Descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and Transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 46(2), 492-496.

Stahl, P. D., & Williams, S. E. (1986). Oil shale process water affects activity of vesicular-arbuscular fungi and Rhizobium 4 years after application to soil. Soil Biology and Biochemistry, 18(4), 451-455.

Tresner, H. D., & Hayes, J. A. (1971). Sodium chloride tolerance of terrestrial fungi. Applied Microbiology, 22(2), 210-213.

Tripathi, A. K., Mishra, B. M., & Tripathi, P. (1998). Salinity stress responses in the plant growth promoting rhizobacteria, Azospirillum spp. Journal of Biosciences, 23, 463-471.

Vaupotič, T., Gunde-Cimerman, N., & Plemenitaš, A. (2007). Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genetics and Biology, 44(11), 1109-1122.

Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and molecular biology reviews, 62(2), 504-544.

Ventosa, A., Sánchez-Porro, C., Martín, S., & Mellado, E. (2005). Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya (pp. 337-354). Springer Netherlands.

Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D., & Somero, G. N. (1982). Living with water stress: evolution of osmolyte systems. Science, 217(4566), 1214-1222.

Yang, L. F., Jiang, J. Q., Zhao, B. S., Zhang, B., Feng, D. Q., Lu, W. D., ... & Yang, S. S. (2006). A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS microbiology letters, 255(1), 89-95.

Yoon, J. H., Kang, K. H., & Park, Y. H. (2002). Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. International journal of systematic and evolutionary microbiology, 52(6), 2043-2048.

Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297-1303.

Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y., & Nakajima, K. (2005). Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. International journal of systematic and evolutionary microbiology, 55(2), 907-911.

Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., & Suemori, A. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. International journal of systematic and evolutionary microbiology, 53(5), 1531-1536.

Zhang, Z., Wang, Y., & Ruan, J. (1998). Reclassification of thermomonospora and microtetraspora. International Journal of Systematic and Evolutionary Microbiology, 48(2), 411-422..

Downloads

Published

2025-05-19

How to Cite

1.
Anandrao PP, Pathade A, Pathade G. Role Of Halophilic Microorganisms in the Bioremediation of Salt-Affected Soils. J Neonatal Surg [Internet]. 2025May19 [cited 2025Sep.21];14(24S):975-8. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6093