Cold Agglutinin Disease: Pathophysiology, Clinical Management, and Emerging Therapeutic Approaches Including Plant-Derived Compounds

Authors

  • Ashok Kumar BS
  • Disha NS
  • Dhruthi Narayan BA
  • Kalyani R

Keywords:

Cold Agglutinin Disease, haemolysis, autoimmune disorders, corticosteroids, curcumin

Abstract

Cold Agglutinin Disease (CAD) is a rare form of autoimmune haemolytic anaemia characterized by the binding of cold-reactive antibodies (cold agglutinins) to red blood cells at low temperatures, leading to clumping and haemolysis. Predominantly affecting older adults, CAD can be either primary (idiopathic) or secondary to underlying conditions such as infections, malignancies, or autoimmune disorders. The disease mechanism involves IgM antibodies binding to red blood cells in cold environments, activating the classical complement pathway, and causing haemolysis. Patients typically present with anaemia symptoms, including fatigue and jaundice, as well as cold-induced circulatory issues like acrocyanosis. Diagnosis is confirmed through clinical evaluation, positive direct antiglobulin test, and elevated cold agglutinin titers. Treatment strategies include avoiding cold exposure, supportive care, and pharmacologic interventions such as corticosteroids, rituximab, and emerging complement inhibitors like eculizumab. Recent advances in understanding CAD's molecular mechanisms have led to more targeted therapies. While plant-derived chemicals like curcumin and resveratrol are not yet established treatments, they are under investigation for their potential benefits in autoimmune and haematological disorders, potentially providing future therapeutic options for CAD. This review offers a comprehensive overview of CAD's causes and treatments, emphasizing recent research and future directions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Loriamini M, Cserti-Gazdewich C, Branch DR. Autoimmune hemolytic anemias: classifications, pathophysiology, diagnoses and management. International journal of molecular sciences. 2024;25(8):4296.

Berentsen S, Sundic T. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy. Bio Med research international. 2015;(1):363278.

Flower V, Pauling JD, Shipley JA, McHugh NJ. Raynaud’s phenomenon and macrocytic anaemia. BMJ. 2010;341:c6011.

Balaja W, Schmidt P, Fenando A. Cold agglutinin disease: A case report with atypical clinical findings. SAGE Open Medical Case Reports. 2023;11:2050313X231191899.

Berentsen S. New insights in the pathogenesis and therapy of cold agglutinin-mediated autoimmune hemolytic anemia. Frontiers in immunology. 2020;11:590.

Berentsen S, Röth A, Randen U, Jilma B, Tjønnfjord GE. Cold agglutinin disease: current challenges and future prospects. Journal of blood medicine. 2019:93-103.

Flegel WA. Pathogenesis and mechanisms of antibody‐mediated hemolysis. Transfusion. 2015;55(S2):S47-58.

Garratty G. Mechanisms of immune red cell destruction, and red cell compatibility testing. Human Pathology. 1983;14(3):204-12.

Swiecicki PL, Hegerova LT, Gertz MA. Cold agglutinin disease. Blood, The Journal of the American Society of Hematology. 2013;122(7):1114-21.

Berentsen S, Fattizzo B, Barcellini W. The choice of new treatments in autoimmune hemolytic anemia: how to pick from the basket?. Frontiers in Immunology. 2023;14:1180509.

Berentsen S. How I manage patients with cold agglutinin disease. British journal of haematology. 2018;181(3):320-30.

Rodrigo C, Rajapakse S, Gooneratne L. Rituximab in the treatment of autoimmune haemolytic anaemia. British journal of clinical pharmacology. 2015;79(5):709-19.

Despotovic JM, Kim TO. Cold AIHA and the best treatment strategies. Hematology. 2022;2022(1):90-5.

Michel M, Crickx E, Fattizzo B, Barcellini W. Autoimmune haemolytic anaemias. Nature Reviews Disease Primers. 2024;10(1):82.

Barcellini W, Fattizzo B. How I treat warm autoimmune hemolytic anemia. Blood, The Journal of the American Society of Hematology. 2021;137(10):1283-94.

Schimmer BP, Funder JW. ACTH, adrenal steroids, and pharmacology of the adrenal cortex. Goodman and Gilman’s the pharmacological basis of therapeutics. 2011:1209-36.

Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. American journal of transplantation. 2006;6(5):859-66.

Eisenberg RA, Khan S, Stansberry J, Tsai D, Kolasinski S, Rieder E, Kotzin B, Looney RJ, Strieber C, Albert D. An open-label safety and efficacy study of an anti-CD20 antibody (rituximab, Rituxan) for anti-B-cell therapy in the treatment of systemic lupus erythematosus. Arthritis Res Ther. 2004;6:1-41.

Perosa F, Prete M, Racanelli V, Dammacco F. CD20‐depleting therapy in autoimmune diseases: from basic research to the clinic. Journal of internal medicine. 2010;267(3):260-77.

Bortolotti M, Barcellini W, Fattizzo B. Molecular pharmacology in complement‐mediated hemolytic disorders. European Journal of Haematology. 2023;111(3):326-36.

Berentsen S, Hill A, Hill QA, Tvedt TH, Michel M. Novel insights into the treatment of complement-mediated hemolytic anemias. Therapeutic advances in haematology. 2019;10:2040620719873321.

Roth A, Barcellini W, D’Sa S, Miyakawa Y, Broome CM, Michel M, Kuter DJ, Jilma B, Tvedt TH, Weitz IC, Patel P. Complement C1s inhibition with sutimlimab results in durable response in cold agglutinin disease: CARDINAL study 1-year interim follow-up results. Haematologica. 2022;107(7):1698.

Berentsen S, Barcellini W, D’Sa S, Jilma B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom?. Immunotherapy. 2022;14(15):1191-204.

Röth A, Barcellini W, D’Sa S, Miyakawa Y, Broome CM, Michel M, Kuter DJ, Jilma B, Tvedt TH, Fruebis J, Jiang X. Sutimlimab in cold agglutinin disease. New England Journal of Medicine. 2021;384(14):1323-34.

Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human microRNA modulation. Molecules. 2019;25(1):63.

Singh M, Verma M, Pandey S, Kumar R, Khan F, Pandey P. Anticancer Potential of Quercetin, Epigallocatechin Gallate, Kaempferol, Apigenin, and Curcumin against Several Human Carcinomas. Endocrine, metabolic & immune disorders drug targets. 2024.

Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human microRNA modulation. Molecules. 2019;25(1):63.

Kalu A, Ray SK. Epigallocatechin-3-Gallate, Quercetin, and Kaempferol for Treatment of Parkinson’s Disease Through Prevention of Gut Dysbiosis and Attenuation of Multiple Molecular Mechanisms of Pathogenesis. Brain Sciences. 2025;15(2):144.

Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug design, development and therapy. 2021:4503-25.

Srivastava RM, Singh S, Dubey SK, Misra K, Khar A. Immunomodulatory and therapeutic activity of curcumin. International immunopharmacology. 2011;11(3):331-41.

Xiao Z, Murakhovskaya I. Development of new drugs for autoimmune hemolytic anemia. Pharmaceutics. 2022;14(5):1035.

Simon L, Baron M, Leblond V. How we manage patients with Waldenström macroglobulinaemia. British journal of haematology. 2018;181(6):737-51.

Lalic H, Aurer I, Batinic D, Visnjic D, Smoljo T, Babic A. Bendamustine: A review of pharmacology, clinical use and immunological effects. Oncology reports. 2022;47(6):114.

Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22(47):7359-68.

Yulistiani Y, Dwiyatna S, Utomo FN. Mechanism of Actions, Efficacy, and Long-term Use of Steroids in Autoimmune Hemolytic Anemia (AIHA). Molecular and Cellular Biomedical Sciences. 2023;7(3):109-21.

Robak T, Kasznicki M. Alkylating agents and nucleoside analogues in the treatment of B cell chronic lymphocytic leukemia. Leukemia. 2002;16(6):1015-27.

Zhu LP, Cupps TR, Whalen G, Fauci AS. Selective effects of cyclophosphamide therapy on activation, proliferation, and differentiation of human B cells. The Journal of clinical investigation. 1987;79(4):1082-90.

Robak T, Lech-Maranda E, Korycka A, Robak E. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Current medicinal chemistry. 2006;13(26):3165-89.

Apostolopoulos C, Castellano L, Stebbing J, Giamas G. Bendamustine as a model for the activity of alkylating agents. Future Oncology. 2008;4(3):323-32.

Zelek WM, Morgan BP. Monoclonal antibodies capable of inhibiting complement downstream of C5 in multiple species. Frontiers in Immunology. 2020;11:612402.

Moore DC, Arnall JR. Sutimlimab: A Complement C1s Inhibitor for the Management of Cold Agglutinin Disease–Associated Hemolysis. Annals of Pharmacotherapy. 2023;57(8):970-7.

Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology. 2018;7(4):211-9.

Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C, Xu R. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug design, development and therapy. 2021:4503-25.

Kumar P, Sulakhiya K, Barua CC, Mundhe N. TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Molecular and cellular biochemistry. 2017;431:113-22.

Memarzia A, Khazdair MR, Behrouz S, Gholamnezhad Z, Jafarnezhad M, Saadat S, Boskabady MH. Experimental and clinical reports on anti‐inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. BioFactors. 2021;47(3):311-50.

Mohammadi A, Mashayekhi K, Navashenaq JG, Haftcheshmeh SM. Curcumin as a natural modulator of B lymphocytes: evidence from in vitro and in vivo studies. Mini reviews in medicinal chemistry. 2022;22(18):2361-70.

Bright JJ. Curcumin and autoimmune disease. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. 2007:425-51.

Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, Chen H. Curcumin and curcuma longa extract in the treatment of 10 types of autoimmune diseases: a systematic review and meta-analysis of 31 randomized controlled trials. Frontiers in immunology. 2022;13:896476.

Sharma A, Sharma A, Sharma A, Kumar Y, Sharma P, Bhardwaj R, Sharma I. Polyphenol phytoalexins as the determinants of plant disease resistance. InPlant Phenolics in Biotic Stress Management. Singapore: Springer Nature Singapore, 2024;243-274.

Golovinskaia O, Wang CK. Review of functional and pharmacological activities of berries. M Oliveira AL, Monteiro VV, Navegantes-Lima KC, Reis JF, Gomes RD, Rodrigues DV, Gaspar SL, Monteiro MC. Resveratrol role in autoimmune disease—a mini-review. Nutrients. 2017;9(12):1306.

Oliveira AL, Monteiro VV, Navegantes-Lima KC, Reis JF, Gomes RD, Rodrigues DV, Gaspar SL, Monteiro MC. Resveratrol role in autoimmune disease a mini-review. Nutrients. 2017;9(12):1306.

Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. Discover Nano. 2024 Sep 10;19(1):144.

Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules. 2021;26(1):229.

Chen X, Song X, Zhao X, Zhang Y, Wang Y, Jia R, Zou Y, Li L, Yin Z. Insights into the Anti‐inflammatory and Antiviral Mechanisms of Resveratrol. Mediators of Inflammation. 2022;(1):7138756.

Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185.

Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P. Effect of ginger on inflammatory diseases. Molecules. 2022;27(21):7223.

Pázmándi K, Szöllősi AG, Fekete T. The “root” causes behind the anti-inflammatory actions of ginger compounds in immune cells. Frontiers in Immunology. 2024;15:1400956.

Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. Journal of neuroimmunology. 2018;324:54-75.

Öz B, Orhan C, Tuzcu M, Şahin N, Özercan İH, Öner PD, Koca SS, Juturu V, Şahin K. Ginger extract suppresses the activations of NF-κB and Wnt pathways and protects inflammatory arthritis. European journal of rheumatology. 2022;8(4):196.

Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack ME, Taha AE, Algammal AM, Elewa YH. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374.

Shen P, Lin W, Deng X, Ba X, Han L, Chen Z, Qin K, Huang Y, Tu S. Potential implications of quercetin in autoimmune diseases. Frontiers in Immunology. 2021;12:689044.

Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacology & therapeutics. 2019;194:107-31.

Alharbi HO, Alshebremi M, Babiker AY, Rahmani AH. The Role of Quercetin, a Flavonoid in the Management of Pathogenesis Through Regulation of Oxidative Stress, Inflammation, and Biological Activities. Biomolecules. 2025;15(1):151.

Huang RY, Yu YL, Cheng WC, OuYang CN, Fu E, Chu CL. Immunosuppressive effect of quercetin on dendritic cell activation and function. The Journal of Immunology. 2010;184(12):6815-21.

Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Frontiers in immunology. 2019;10:51.

Wu D, Wang J, Pae M, Meydani SN. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases. Molecular aspects of medicine. 2012;33(1):107-18.

Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective effect of epigallocatechin-3-gallate (EGCG) in diseases with uncontrolled immune activation: could such a scenario be helpful to counteract COVID-19?. International journal of molecular sciences. 2020;21(14):5171.

Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory effects of green tea polyphenols. Molecules. 2021;26(12):3755.

Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. International journal of molecular sciences. 2022;24(1):340.

Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M. Polyphenols in the treatment of autoimmune diseases. Autoimmunity reviews. 2019;18(7):647-57.

Riegsecker S, Wiczynski D, Kaplan MJ, Ahmed S. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life sciences. 2013;93(8):307-12.

..

Downloads

Published

2025-06-02

How to Cite

1.
Kumar BS A, NS D, Narayan BA D, R K. Cold Agglutinin Disease: Pathophysiology, Clinical Management, and Emerging Therapeutic Approaches Including Plant-Derived Compounds. J Neonatal Surg [Internet]. 2025Jun.2 [cited 2025Oct.11];14(29S):811-9. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6896