1,3-Thiazoles: Advances in Synthesis, Properties, and Comprehensive Biological Potential
Keywords:
Anti-Inflammatory, Antioxidant, Antiviral, Gewald Reaction, Hantzsch SynthesisAbstract
1,3-Thiazole compounds have garnered considerable interest due to their diverse biological activities and adaptable chemical structures. An extensive summary of 1,3-thiazole derivative synthesis, physicochemical characteristics, and biological uses is given in this review. A wide range of synthetic procedures is covered in depth, including metal-catalyzed and green chemistry techniques, as well as more contemporary approaches, such as the Hantzsch thiazole synthesis. The thiazole moiety is a useful scaffold in drug development because of its strong binding affinity to a variety of biological targets, which is facilitated by its structural flexibility and electrical properties. Additionally, the development of more potent thiazole-based treatments with enhanced selectivity and decreased toxicity has been directed by structure-activity relationship (SAR) research. 1,3-thiazole compounds have been investigated in agrochemicals, dyes, and materials science in addition to pharmacological uses. This review highlights recent advancements in developing thiazole-based heterocyclic compounds, emphasizing their role as a key scaffold in biological and medicinal applications
Downloads
Metrics
References
I. D. Spenser and R. L. White, “Biosynthesis of Vitamin B 1 (Thiamin): An Instance of Biochemical Diversity,” Angewandte Chemie International Edition in English, vol. 36, no. 10, pp. 1032–1046, May 1997, doi: 10.1002/anie.199710321.
T. Qadir, A. Amin, P. K. Sharma, I. Jeelani, and H. Abe, “A Review on Medicinally Important Heterocyclic Compounds,” Open Med Chem J, vol. 16, no. 1, Apr. 2022, doi: 10.2174/18741045-v16-e2202280.
Seema, P. Yadav, S. Sharma, S. Kumari, and M. Ranka, “SYNTHESIS, CHARACTERIZATION, AND ANTIMICROBIAL STUDIES OF NOVEL BIO-RELEVANT COMPOUNDS DERIVED FROM SUBSTITUTED BENZOTHIAZOLE,” RASAYAN Journal of Chemistry, vol. 16, no. 03, pp. 1486–1494, 2023, doi: 10.31788/RJC.2023.1638148.
U. A. Atmaram and S. M. Roopan, “Biological activity of oxadiazole and thiadiazole derivatives,” Appl Microbiol Biotechnol, vol. 106, no. 9–10, pp. 3489–3505, May 2022, doi: 10.1007/s00253-022-11969-0.
Jayshri K. Bhagwat and Monika B.Ambre, “PHARMACOLOGICAL APPLICATION OF THIOPHENE DERIVATIVES,” EPRA International Journal of Multidisciplinary Research (IJMR), pp. 212–217, Jun. 2023, doi: 10.36713/epra13592.
N. D. Mahajan and N. Jain, “Synthesis of heterocyclic compounds and their utilities in the field biological science,” Int J Health Sci (Qassim), pp. 9645–9650, May 2022, doi: 10.53730/ijhs.v6nS2.7517.
S. Garg, M. Kaur, D. S. Malhi, H. S. Sohal, and A. Sharma, “Recent Advances in the Synthesis and Bioapplications of Some Oxygen and Sulphur Containing Seven Membered Heterocyclic Compounds,” 2021, pp. 107–179. doi: 10.2174/9789811803741121140005.
https://byjus.com, “ https://byjus.com/chemistry/heterocyclic-compound.”
A. Parthasarathy, E. J. Borrego, M. A. Savka, R. C. J. Dobson, and A. O. Hudson, “Amino acid–derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development,” Journal of Biological Chemistry, vol. 296, p. 100438, Jan. 2021, doi: 10.1016/j.jbc.2021.100438.
M. S. Singh and S. Chowdhury, “Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis,” RSC Adv, vol. 2, no. 11, p. 4547, 2012, doi: 10.1039/c2ra01056a.
M. N. Elinson et al., “General approach to a spiro indole-3,1′-naphthalene tetracyclic system: stereoselective pseudo four-component reaction of isatins and cyclic ketones with two molecules of malononitrile,” RSC Adv, vol. 5, no. 62, pp. 50421–50424, 2015, doi: 10.1039/C5RA03452C.
[K. Sujatha and R. R. Vedula, “Novel one-pot expeditious synthesis of 2,4-disubstituted thiazoles through a three-component reaction under solvent free conditions,” Synth Commun, vol. 48, no. 3, pp. 302–308, Feb. 2018, doi: 10.1080/00397911.2017.1399422.
[V. Arandkar, K. Vaarla, and R. R. Vedula, “Facile one pot multicomponent synthesis of novel 4-(benzofuran-2-yl)-2-(3-(aryl/heteryl)-5-(aryl/heteryl)-4,5-dihydro-1 H -pyrazol-1yl)thiazole derivatives,” Synth Commun, vol. 48, no. 11, pp. 1285–1290, Jun. 2018, doi: 10.1080/00397911.2018.1440600.
A. Hantzsch and J. H. Weber, “Ueber Verbindungen des Thiazols (Pyridins der Thiophenreihe),” Berichte der deutschen chemischen Gesellschaft, vol. 20, no. 2, pp. 3118–3132, Jul. 1887, doi: 10.1002/cber.188702002200.
[M.-Y. L. Y.-X. W. M.-L. T. P. L.-Y. T. S. C. K. N. Shu-Su Shen, “Intramolecular nucleophilic substitution at an sp2 carbon: synthesis of substituted thiazoles and imidazole-2-thiones,” Tetrahedron Lett, vol. 50, no. limited online availability or indexing issues., pp. 3161–3163, 2009.
[E. M. Breitung, C.-F. Shu, and R. J. McMahon, “Thiazole and Thiophene Analogues of Donor−Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure−Property Relationships,” J Am Chem Soc, vol. 122, no. 6, pp. 1154–1160, Feb. 2000, doi: 10.1021/ja9930364.
[M. D’Auria, R. Racioppi, L. Viggiani, and P. Zanirato, “Photochemical Reactivity of 2‐Azido‐1,3‐thiazole and 2‐Azido‐1,3‐benzothiazole: A Procedure for the Aziridination of Enol Ethers,” European J Org Chem, vol. 2009, no. 6, pp. 932–937, Feb. 2009, doi: 10.1002/ejoc.200800959.
[Maurizio D’Auria, “Ab initio study on the photochemical isomerization of thiazole derivatives,” Tetrahedron, pp. 58–58, 2022.
M. R. Pinto, Y. Takahata, and T. D. Z. Atvars, “Photophysical properties of 2,5-diphenyl-thiazolo[5,4- d ]thiazole,” J Photochem Photobiol A Chem, vol. 143, no. 2–3, pp. 119–127, Oct. 2001, doi: 10.1016/S1010-6030(01)00520-2.
Y. Huang, H. Gan, S. Li, J. Xu, X. Wu, and H. Yao, “Oxidation of 4-carboxylate thiazolines to 4-carboxylate thiazoles by molecular oxygen,” Tetrahedron Lett, vol. 51, no. 13, pp. 1751–1753, Mar. 2010, doi: 10.1016/j.tetlet.2010.01.091.
[S. H. Ali and A. R. Sayed, “Review of the synthesis and biological activity of thiazoles,” Synth Commun, vol. 51, no. 5, pp. 670–700, Mar. 2021, doi: 10.1080/00397911.2020.1854787.
. Petrou, M. Fesatidou, and A. Geronikaki, “Thiazole Ring—A Biologically Active Scaffold,” Molecules, vol. 26, no. 11, p. 3166, May 2021, doi: 10.3390/molecules26113166.
[E. Amir and S. Rozen, “Easy access to the family of thiazole N-oxides using HOF·CH 3 CN,” Chem. Commun., no. 21, pp. 2262–2264, 2006, doi: 10.1039/B602594C.
M. Gümüş, M. Yakan, and İ. Koca, “Recent Advances of Thiazole Hybrids in Biological Applications,” Future Med Chem, vol. 11, no. 15, pp. 1979–1998, Aug. 2019, doi: 10.4155/fmc-2018-0196.
[G. V. Suresh Kumar, Y. Rajendra Prasad, and S. M. Chandrashekar, “Synthesis and pharmacological evaluation of some novel 4-isopropyl thiazole-based sulfonyl derivatives as potent antimicrobial and antitubercular agents,” Medicinal Chemistry Research, vol. 22, no. 9, pp. 4239–4252, Sep. 2013, doi: 10.1007/s00044-012-0431-1.
K. N. Venugopala et al., “Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics,” J Biomol Struct Dyn, vol. 37, no. 7, pp. 1830–1842, May 2019, doi: 10.1080/07391102.2018.1470035.
N. Sahiba, A. Sethiya, J. Soni, D. K. Agarwal, and S. Agarwal, “Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications,” Top Curr Chem, vol. 378, no. 2, p. 34, Apr. 2020, doi: 10.1007/s41061-020-0298-4.
[S. Abu-Melha, M. M. Edrees, S. M. Riyadh, M. R. Abdelaziz, A. A. Elfiky, and S. M. Gomha, “Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (Mpro),” Molecules, vol. 25, no. 19, p. 4565, Oct. 2020, doi: 10.3390/molecules25194565.
G. V. Suresh Kumar, Y. Rajendra Prasad, and S. M. Chandrashekar, “Synthesis and pharmacological evaluation of some novel 4-isopropyl thiazole-based sulfonyl derivatives as potent antimicrobial and antitubercular agents,” Medicinal Chemistry Research, vol. 22, no. 9, pp. 4239–4252, Sep. 2013, doi: 10.1007/s00044-012-0431-1.
[M. Madni, S. Hameed, M. N. Ahmed, M. N. Tahir, N. A. Al-Masoudi, and C. Pannecouque, “Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives,” Medicinal Chemistry Research, vol. 26, no. 10, pp. 2653–2665, Oct. 2017, doi: 10.1007/s00044-017-1963-1.
S. Ke et al., “Synthesis and Evaluation of Steroidal Thiazoline Conjugates as Potential Antiviral Agents,” Future Med Chem, vol. 10, no. 22, pp. 2589–2605, Nov. 2018, doi: 10.4155/fmc-2018-0075.
A. A. Fedorchuk et al., “Unexpected complexation of allylpseudothiohydantoin hydrochlorides towards Cu X ( X = Cl, NO 3 , ClO 4 , BF 4 , 1/2SiF 6 ). The first known examples of joint Cu I (Cl,ClO 4 ) and Cu I (Cl,BF 4 ) π-complexes,” J Coord Chem, vol. 70, no. 5, pp. 871–884, Mar. 2017, doi: 10.1080/00958972.2017.1286012.
H. A. Abd El Razik, M. H. Badr, A. H. Atta, S. M. Mouneir, and M. M. Abu‐Serie, “Benzodioxole–Pyrazole Hybrids as Anti‐Inflammatory and Analgesic Agents with COX‐1,2/5‐LOX Inhibition and Antioxidant Potential,” Arch Pharm (Weinheim), vol. 350, no. 5, May 2017, doi: 10.1002/ardp.201700026.
J. Abbasi Shiran et al., “Novel, One-Pot, Three-Component, Regioselective Synthesis of Fluorine-Containing Thiazole and Bis-3 H -thiazole Derivatives Using Polyvinyl Pyridine as Heterogeneous Catalyst, and Evaluation of Their Antibacterial Activity,” Synth Commun, vol. 45, no. 13, pp. 1520–1532, Jul. 2015, doi: 10.1080/00397911.2015.1025909.
S. Kamila, B. Koh, and E. R. Biehl, “Microwave‐assisted ‘green’ synthesis of 2‐alkyl/arylbenzothiazoles in one pot: A facile approach to anti‐tumor drugs,” J Heterocycl Chem, vol. 43, no. 6, pp. 1609–1612, Nov. 2006, doi: 10.1002/jhet.5570430627.
[. N. Shabaan, B. S. Baaiu, A. Abdel-Aziem, and M. S. Abdel-Aziz, “Ultrasound-assisted green synthesis and antimicrobial assessment of 1,3-thiazoles and 1,3,4-thiadiazines,” Green Chem Lett Rev, vol. 14, no. 4, pp. 679–688, Oct. 2021, doi: 10.1080/17518253.2021.1999508.
A. Mori et al., “Facile Synthesis of 2,5-Diarylthiazoles via Palladium-Catalyzed Tandem C−H Substitutions. Design of Tunable Light Emission and Liquid Crystalline Characteristics,” J Am Chem Soc, vol. 125, no. 7, pp. 1700–1701, Feb. 2003, doi: 10.1021/ja0289189.
D. S. N. Bikobo et al., “Synthesis of 2-phenylamino-thiazole derivatives as antimicrobial agents,” Journal of Saudi Chemical Society, vol. 21, no. 7, pp. 861–868, Nov. 2017, doi: 10.1016/j.jscs.2017.04.007.
K. Liaras, A. Geronikaki, J. Glamočlija, A. Ćirić, and M. Soković, “Thiazole-based aminopyrimidines and N-phenylpyrazolines as potent antimicrobial agents: synthesis and biological evaluation,” Med. Chem. Commun., vol. 5, no. 7, pp. 915–922, 2014, doi: 10.1039/C4MD00124A.
[E. H. El‐Sayed and A. A. Fadda, “Synthesis and Antimicrobial Activity of Some Novel bis Polyfunctional Pyridine, Pyran, and Thiazole Derivatives,” J Heterocycl Chem, vol. 55, no. 10, pp. 2251–2260, Oct. 2018, doi: 10.1002/jhet.3276.
Z. Jin, “Muscarine, imidazole, oxazole, and thiazole alkaloids,” Nat Prod Rep, vol. 28, no. 6, p. 1143, 2011, doi: 10.1039/c0np00074d.
T. A. Farghaly, M. A. Abdallah, M. A. Khedr, and H. K. Mahmoud, “Synthesis, Antimicrobial Activity and Molecular Docking Study of Thiazole Derivatives,” J Heterocycl Chem, vol. 54, no. 4, pp. 2417–2425, Jul. 2017, doi: 10.1002/jhet.2838.
P. Makam, P. K. Thakur, and T. Kannan, “In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives,” European Journal of Pharmaceutical Sciences, vol. 52, pp. 138–145, Feb. 2014, doi: 10.1016/j.ejps.2013.11.001.
M. A. Morsy et al., “Screening and Molecular Docking of Novel Benzothiazole Derivatives as Potential Antimicrobial Agents,” Antibiotics, vol. 9, no. 5, p. 221, Apr. 2020, doi: 10.3390/antibiotics9050221.
K. Sujatha, N. B. Ommi, A. Mudiraj, P. P. Babu, and R. R. Vedula, “Synthesis of thiazolyl hydrazonothiazolamines and 1,3,4‐thiadiazinyl hydrazonothiazolamines as a class of antimalarial agents,” Arch Pharm (Weinheim), vol. 352, no. 12, Dec. 2019, doi: 10.1002/ardp.201900079.
S. M. Jagadale et al., “Synthesis of New Thiazole and Pyrazole Clubbed 1,2,3-Triazol Derivatives as Potential Antimycobacterial and Antibacterial Agents,” Polycycl Aromat Compd, vol. 42, no. 6, pp. 3216–3237, Jul. 2022, doi: 10.1080/10406638.2020.1857272.
A. Alsayari et al., “Synthesis, Characterization, and Biological Evaluation of Some Novel Pyrazolo[5,1-b]thiazole Derivatives as Potential Antimicrobial and Anticancer Agents,” Molecules, vol. 26, no. 17, p. 5383, Sep. 2021, doi: 10.3390/molecules26175383.
S. K. Bhagwat et al., “Synthesis, characterization, biological activities, and computational studies of pyrazolyl–thiazole derivatives of thiophene,” RSC Adv, vol. 14, no. 52, pp. 39004–39016, 2024, doi: 10.1039/D4RA06228K.
M. Afroz and G. S. Kumar, “Microwave-Assisted Synthesis, Molecular Docking Studies and Biological Evaluation of Novel Thiazole, Imidazole-Indole Hybrids,” Asian Journal of Chemistry, vol. 35, no. 3, pp. 705–711, Feb. 2023, doi: 10.14233/ajchem.2023.27297.
[A. Petrou, M. Fesatidou, and A. Geronikaki, “Thiazole Ring—A Biologically Active Scaffold,” Molecules, vol. 26, no. 11, p. 3166, May 2021, doi: 10.3390/molecules26113166.
N. TH, S. S. Nair, Dr. A. Kumar, Dr. V. B, and Dr. D. P A, “A Review on Synthesis and Biological Activity of Thiazole and its Derivatives,” Int. J Pharm Sci Rev Res, vol. 70, no. 1, Sep. 2021, doi: 10.47583/ijpsrr.2021.v70i01.029.
M. Bazrafshan, M. Vakili, S. F. Tayyari, F. S. Kamounah, P. E. Hansen, and A. Shiri, “Synthesis, molecular structure, conformational, and intramolecular hydrogen bond strength of ethyl 3-amino-2-butenoate and its N-Me, N-Ph, and N-Bn analogs; An experimental and theoretical study,” J Mol Struct, vol. 1274, p. 134479, Feb. 2023, doi: 10.1016/j.molstruc.2022.134479.
K. A. El Sayed et al., “Latrunculin A and Its C-17- O -Carbamates Inhibit Prostate Tumor Cell Invasion and HIF-1 Activation in Breast Tumor Cells,” J Nat Prod, vol. 71, no. 3, pp. 396–402, Mar. 2008, doi: 10.1021/np070587w.
L. D. Khillare, M. R. Bhosle, A. R. Deshmukh, and R. A. Mane, “Synthesis and anti-inflammatory evaluation of new pyrazoles bearing biodynamic thiazole and thiazolidinone scaffolds,” Medicinal Chemistry Research, vol. 24, no. 4, pp. 1380–1386, Apr. 2015, doi: 10.1007/s00044-014-1222-7.
A. Rouf and C. Tanyeli, “Bioactive thiazole and benzothiazole derivatives,” Eur J Med Chem, vol. 97, pp. 911–927, Jun. 2015, doi: 10.1016/j.ejmech.2014.10.058.
N. Trotsko, “Thiazolidin-4-Ones as a Promising Scaffold in the Development of Antibiofilm Agents—A Review,” Int J Mol Sci, vol. 25, no. 1, p. 325, Dec. 2023, doi: 10.3390/ijms25010325.
M. F. Abo-Ashour et al., “Synthesis and Biological Evaluation of 2-Aminothiazole-Thiazolidinone Conjugates as Potential Antitubercular Agents,” Future Med Chem, vol. 10, no. 12, pp. 1405–1419, Jun. 2018, doi: 10.4155/fmc-2017-0327.
A.-I. Pricopie et al., “Novel 2,4-Disubstituted-1,3-Thiazole Derivatives: Synthesis, Anti-Candida Activity Evaluation and Interaction with Bovine Serum Albumine,” Molecules, vol. 25, no. 5, p. 1079, Feb. 2020, doi: 10.3390/molecules25051079.
K. N. Venugopala et al., “Benzothiazole analogs as potential anti-TB agents: computational input and molecular dynamics,” J Biomol Struct Dyn, vol. 37, no. 7, pp. 1830–1842, May 2019, doi: 10.1080/07391102.2018.1470035.
[S. Abu-Melha, M. M. Edrees, S. M. Riyadh, M. R. Abdelaziz, A. A. Elfiky, and S. M. Gomha, “Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (Mpro),” Molecules, vol. 25, no. 19, p. 4565, Oct. 2020, doi: 10.3390/molecules25194565.
M. Madni, S. Hameed, M. N. Ahmed, M. N. Tahir, N. A. Al-Masoudi, and C. Pannecouque, “Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new pyrazolylthiazole derivatives,” Medicinal Chemistry Research, vol. 26, no. 10, pp. 2653–2665, Oct. 2017, doi: 10.1007/s00044-017-1963-1.
[S. Ke et al., “Synthesis and Evaluation of Steroidal Thiazoline Conjugates as Potential Antiviral Agents,” Future Med Chem, vol. 10, no. 22, pp. 2589–2605, Nov. 2018, doi: 10.4155/fmc-2018-0075.
F. Li, Q. Zhu, Y. Zhang, Y. Feng, Y. Leng, and A. Zhang, “Design, synthesis, and pharmacological evaluation of N-(4-mono and 4,5-disubstituted thiazol-2-yl)-2-aryl-3-(tetrahydro-2H-pyran-4-yl)propanamides as glucokinase activators,” Bioorg Med Chem, vol. 18, no. 11, pp. 3875–3884, Jun. 2010, doi: 10.1016/j.bmc.2010.04.038.
[A. S. Sokolova, O. I. Yarovaya, N. I. Bormotov, L. N. Shishkina, and N. F. Salakhutdinov, “Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus -reproduction inhibitors,” Medchemcomm, vol. 9, no. 10, pp. 1746–1753, 2018, doi: 10.1039/C8MD00347E.
C. M. Moldovan et al., “Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole,” Eur J Med Chem, vol. 46, no. 2, pp. 526–534, Feb. 2011, doi: 10.1016/j.ejmech.2010.11.032.
[R. D. Kamble et al., “Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents,” Comput Biol Chem, vol. 61, pp. 86–96, Apr. 2016, doi: 10.1016/j.compbiolchem.2016.01.007.
B. Tiperciuc, A. Pârvu, R. Tamaian, C. Nastasă, I. Ionuţ, and O. Oniga, “New anti-inflammatory thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles with antioxidant properties as potential iNOS inhibitors,” Arch Pharm Res, vol. 36, no. 6, pp. 702–714, Jun. 2013, doi: 10.1007/s12272-013-0083-9.
G. L. Khatik et al., “A Retrospect Study on Thiazole Derivatives as the Potential Antidiabetic Agents in Drug Discovery and Developments,” Curr Drug Discov Technol, vol. 15, no. 3, pp. 163–177, Jul. 2018, doi: 10.2174/1570163814666170915134018.
[G. Tegginamath, R. R. Kamble, P. P. Kattimani, and S. B. Margankop, “Synthesis of 3-aryl-4-({2-[4-(6-substituted-coumarin-3-yl)-1,3-thiazol-2-yl]hydrazinylidene}methyl/ethyl)-sydnones using silica sulfuric acid and their antidiabetic, DNA cleavage activity,” Arabian Journal of Chemistry, vol. 9, pp. S306–S312, Sep. 2016, doi: 10.1016/j.arabjc.2011.04.006.
E. Ghazaryan et al., “One-pot green synthesis, biological evaluation, and in silico study of pyrazole derivatives obtained from chalcones,” Green Processing and Synthesis, vol. 13, no. 1, Nov. 2024, doi: 10.1515/gps-2024-0105.
J. R. B. Dyck et al., “Malonyl Coenzyme A Decarboxylase Inhibition Protects the Ischemic Heart by Inhibiting Fatty Acid Oxidation and Stimulating Glucose Oxidation,” Circ Res, vol. 94, no. 9, May 2004, doi: 10.1161/01.RES.0000129255.19569.8f.
M. J. Jackson, “Mechanistic models to guide redox investigations and interventions in musculoskeletal ageing,” Free Radic Biol Med, vol. 149, pp. 2–7, Mar. 2020, doi: 10.1016/j.freeradbiomed.2020.01.020.
Y. Kaddouri, F. Abrigach, E. B. Yousfi, M. El Kodadi, and R. Touzani, “New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: synthesis, DFT calculations and molecular docking study,” Heliyon, vol. 6, no. 1, p. e03185, Jan. 2020, doi: 10.1016/j.heliyon.2020.e03185.
M. V. Bhaskara Reddy, D. Srinivasulu, K. Peddanna, Ch. Apparao, and P. Ramesh, “Synthesis and Antioxidant Activity of New Thiazole Analogues Possessing Urea, Thiourea, and Selenourea Functionality,” Synth Commun, vol. 45, no. 22, pp. 2592–2600, Nov. 2015, doi: 10.1080/00397911.2015.1095929.
K. N. Mohana and C. B. P. Kumar, “Synthesis and Antioxidant Activity of 2-Amino-5-methylthiazol Derivatives Containing 1,3,4-Oxadiazole-2-thiol Moiety,” ISRN Org Chem, vol. 2013, pp. 1–8, Aug. 2013, doi: 10.1155/2013/620718.
[K. Z. Łączkowski, K. Sałat, K. Misiura, A. Podkowa, and N. Malikowska, “Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures,” J Enzyme Inhib Med Chem, vol. 31, no. 6, pp. 1576–1582, Nov. 2016, doi: 10.3109/14756366.2016.1158172.
A. A. Farag, S. N. Abd‐Alrahman, G. F. Ahmed, R. M. Ammar, Y. A. Ammar, and S. Y. Abbas, “Synthesis of Some Azoles Incorporating a Sulfonamide Moiety as Anticonvulsant Agents,” Arch Pharm (Weinheim), vol. 345, no. 9, pp. 703–712, Sep. 2012, doi: 10.1002/ardp.201200014.
M. Mishchenko, S. Shtrygol, D. Kaminskyy, and R. Lesyk, “Thiazole-Bearing 4-Thiazolidinones as New Anticonvulsant Agents,” Sci Pharm, vol. 88, no. 1, p. 16, Mar. 2020, doi: 10.3390/scipharm88010016.
A. A. Siddiqui, S. Partap, S. Khisal, M. S. Yar, and R. Mishra, “Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues,” Bioorg Chem, vol. 99, p. 103584, Jun. 2020, doi: 10.1016/j.bioorg.2020.103584.
N. Ahangar, A. Ayati, E. Alipour, A. Pashapour, A. Foroumadi, and S. Emami, “1‐[(2‐Arylthiazol‐4‐yl)methyl]azoles as a New Class of Anticonvulsants: Design, Synthesis, In vivo Screening, and In silico Drug‐like Properties,” Chem Biol Drug Des, vol. 78, no. 5, pp. 844–852, Nov. 2011, doi: 10.1111/j.1747-0285.2011.01211.x.
[P. S. Thacker, M. Alvala, M. Arifuddin, A. Angeli, and C. T. Supuran, “Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors,” Bioorg Chem, vol. 86, pp. 386–392, May 2019, doi: 10.1016/j.bioorg.2019.02.004.
S. Abu-Melha, M. M. Edrees, H. H. Salem, N. A. Kheder, S. M. Gomha, and M. R. Abdelaziz, “Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents,” Molecules, vol. 24, no. 3, p. 539, Feb. 2019, doi: 10.3390/molecules24030539.
A. E. Evren, L. Yurttas, B. Ekselli, and G. Akalin-Ciftci, “Synthesis and biological evaluation of 5-methyl-4-phenyl thiazole derivatives as anticancer agents,” Phosphorus Sulfur Silicon Relat Elem, vol. 194, no. 8, pp. 820–828, Aug. 2019, doi: 10.1080/10426507.2018.1550642.
A. R. Sayed et al., “
One-Pot Synthesis of Novel Thiazoles as Potential Anti-Cancer Agents
,” Drug Des Devel Ther, vol. Volume 14, pp. 1363–1375, Apr. 2020, doi: 10.2147/DDDT.S221263.Z. Abdollahi, M. Nejabat, K. Abnous, and F. Hadizadeh, “The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer’s disease: a systematic literature review,” Res Pharm Sci, vol. 19, no. 1, pp. 1–12, Jan. 2024, doi: 10.4103/1735-5362.394816.
D.-H. Shi et al., “Synthesis, characterization, crystal structures, and the biological evaluation of 2-phenylthiazole derivatives as cholinesterase inhibitors,” J Chem Res, vol. 45, no. 5–6, pp. 572–581, May 2021, doi: 10.1177/1747519820976543.
[A. Y. Hemaida, G. S. Hassan, A. R. Maarouf, J. Joubert, and A. A. El-Emam, “Synthesis and Biological Evaluation of Thiazole-Based Derivatives as Potential Acetylcholinesterase Inhibitors,” ACS Omega, vol. 6, no. 29, pp. 19202–19211, Jul. 2021, doi: 10.1021/acsomega.1c02549.
M. A. M. Alhamami, J. S. Algethami, and S. Khan, “A Review on Thiazole Based Colorimetric and Fluorimetric Chemosensors for the Detection of Heavy Metal Ions,” Crit Rev Anal Chem, vol. 54, no. 8, pp. 2689–2713, Nov. 2024, doi: 10.1080/10408347.2023.2197073.
[M. G. Kukade et al., “Microwave assisted solvent-free synthesis of N-phenyl-4-(pyridin-4-yl)thiazoles and their drug-likeness studies,” Journal of the Indian Chemical Society, vol. 99, no. 6, p. 100509, Jun. 2022, doi: 10.1016/j.jics.2022.100509.
[S. V. Kumar, G. Parameshwarappa, and H. Ila, “Synthesis of 2,4,5-Trisubstituted Thiazoles via Lawesson’s Reagent-Mediated Chemoselective Thionation–Cyclization of Functionalized Enamides,” J Org Chem, vol. 78, no. 14, pp. 7362–7369, Jul. 2013, doi: 10.1021/jo401208u.
T. A. Farghaly, M. A. Abdallah, M. A. Khedr, and H. K. Mahmoud, “Synthesis, Antimicrobial Activity and Molecular Docking Study of Thiazole Derivatives,” J Heterocycl Chem, vol. 54, no. 4, pp. 2417–2425, Jul. 2017, doi: 10.1002/jhet.2838.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.