Advancements in Computer-Aided Drug Design: A Comprehensive Review
DOI:
https://doi.org/10.63682/jns.v14i7S.9173Keywords:
Molecular docking, rigid, flexible, binding, receptorAbstract
In the last few years, the Computer-Aided Drug Design and Discovery is many successes rates. Computational drug design is used for drug lead discovery in various pharmaceutical industries and academic institutions. In the current era of medication research and discovery, structural data is crucial. Various docking programs have been created to visualize the three-dimensional structure of molecules. Drug design software that runs on computers is used to examine the docking score. It is a virtual screening technique for target molecule orientation, conformation, and position that is based on structure. The idea of ligand and protein docking is novel. Biological pathway analysis, de Novo drug design, and lead molecule optimization are the three complex aspects of the molecular docking approach
Downloads
Metrics
References
B Mukesh, K Rakesh. Molecular docking: a review. IJRAP. 2011; 2; 1746-1751.
IA Guedes, CS de Magalhaes, LE Dardenne. Receptor-ligand molecular docking, Biophysical Reviews.2014; 6: 75-87.
S Agarwal, D Chadha, R Mehrotra. Molecular modeling and spectroscopic studies of semustine binding with DNA and its comparison with lomustine-DNA adduct formation. J Biomol Struct Dyn. 2015; 33: 1653-1668.
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des.2010;24: 417-422.
Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecular docking. Curr Opin Chem Biol. 2022; 6: 439-446.
Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813– 1818. [PubMed] [Google Scholar]
Bajorath J. Integration of virtual and highthroughput screening. Nat Rev Drug Discov. 2002;1(11):882– 894. [PubMed] [Google Scholar]
Walters WP, Stahl MT, Murcko MA. Virtual screening - an overview. Drug Discov. Today. 1998; 3:160–178. [Google Scholar]
Langer T, Hoffmann RD. Virtual screening: An effective tool for lead structure discovery? Curr Pharm Des. 2001;7(7):509– 527. [PubMed] [Google Scholar]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov. 2004;3(11):935– 949. [PubMed] [Google Scholar]
Gohlke H, Klebe G. Approaches to the description and prediction of the binding affinity of small-molecule ligandsto macromolecular receptors. Angew Chem Int Ed Engl. 2002;41(15):2644– 2676. [PubMed] [Google Scholar]
Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol. 2008;153(Suppl 1): S7–26. [PMC free article] [PubMed] [Google Scholar]
Brady GP Jr, Stouten PF. Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des. 2000;14(4):383– 401. [PubMed] [Google Scholar]
Mezei M. A new method for mapping macromolecular topography. J Mol Graph Model. 2003;21(5):463– 472. [PubMed] [Google Scholar]
Fischer E. Einfluss der configuration auf die wirkung derenzyme. Ber. Dt. Chem. Ges. 1894; 27:2985–2993. [Google Scholar]
11. Koshland DE Jr. Correlation of structure and function in enzyme action. Science. 1963; 142:1533–1541. [PubMed] [Google Scholar]
12. Hammes GG. Multiple conformational changes in enzyme catalysis. Biochemistry. 2002;41(26):8221–8228. [PubMed] [Google Scholar]
Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261(3):470–489. [PubMed] [Google Scholar]
14. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry. 1998;19(14):1639– 1662. [Google Scholar]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267(3):727– 748. [PubMed] [Google Scholar]
16. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M,Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1 Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739– 1749. [PubMed] [Google Scholar]
McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK. Gaussian docking functions. Biopolymers.2003;68(1):76– 90. [PubMed] [Google Scholar]
18. Shoichet BK, McGovern SL, Wei B, Irwin JJ. Hits, leads and artifacts from virtual and high throughput screening. Molecular Informatics: Confronting Complexity; 2002. [Google Scholar]
Bailey D, Brown D. High-throughput chemistry and structure-based design: Survival of the smartest. Drug Discov Today. 2001;6(2):57– 59. [PubMed] [Google Scholar]
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161(2):269– 288. [PubMed] [Google Scholar]
21. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins. 2002;47(4):409– 443. [PubMed] [Google Scholar]
Coupez B, Lewis RA. Docking and scoring- -theoretically easy, practically impossible? Curr Med Chem. 2006;13(25):2995– 3003. [PubMed] [Google Scholar]
Kontoyianni M, Madhav P, Suchanek E, Seibel W. Theoretical and practical considerations in virtual screening: A beaten field? Curr Med Chem. 2008;15(2):107– 116. [PubMed] [Google Scholar]
Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003; 32:335– 373. [PubMed] [Google Scholar]
ten Brink T, Exner TE. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J Chem Inf Model. 2009;49(6):1535–1546. [PubMed] [Google Scholar]
Cros JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model. 2009;49(6):1455–1474. [PubMed] [Google Scholar]
Li X, Li Y, Cheng T, Liu Z, Wang R. Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J Comput Chem. 2010;31(11):2109–2125. [PubMed] [Google Scholar]
Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceuticalrelevance. Proteins. 2004;56(2):235–249. [PubMed] [Google Scholar]
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49(2):534–553. [PubMed] [Google Scholar]
Jiang F, Kim SH. “Soft docking”: matching of molecular surface cubes. J MolBiol. 1991;219(1):79–102. [PubMed] [Google Scholar]
Claussen H, Buning C, Rarey M, Lengauer T. FlexE: Efficient molecular docking considering protein structure variations. J Mol Biol. 2001;308(2):377–395. [PubMed] [Google Scholar]
Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamicsimulations in drug design. Med Res Rev. 2006;26(5):531–568. [PubMed] [Google Scholar]
Sander T, Liljefors T, Balle T. Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model. 2008;26(8): 1259–1268. [PubMed][Google Scholar]
Subramanian J, Sharma S, BR C. A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. J Med Chem. 2006;49(18):5434–5441. [PubMed] [Google Scholar]
Subramanian J, Sharma S, BR C. Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK. ChemMedChem. 2008;3(2):336–344. [PubMed] [Google Scholar]
R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem; 2010.DOI: 10.1002/jcc.21643. [PubMed] [Google Scholar]
McConkey BJ, Sobolev V, Edelman M. The performance of current methods in ligand protein docking. Current Science. 2002; 83:845–855. [Google Scholar]
Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985;28(7):849–857. [PubMed] [Google Scholar]
Kastenholz MA, Pastor M, Cruciani G, Haaksma EE, Fox T. GRID/CPCA: A new computational tool to design selctive ligands. J Med Chem. 2000;43(16):3033– 3044. [PubMed] [Google Scholar]
Levitt DG, Banaszak LJ. Pocket: A computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992;10(4):229–234. [PubMed] [Google Scholar]
Laskowski RA. Surfnet: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995;13(5):323–330. 307–328. [PubMed] [Google Scholar]
Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM. A method for localizing ligand binding pockets in protein structures. Proteins. 2006;62(2): 479–488. [PubMed] [Google Scholar]
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des. 2001;15(5):411–428. [PubMed] [Google Scholar]
Welch W, Ruppert J, Jain AN. Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol. 1996;3(6):449–462. [PubMed] [Google Scholar]
Schnecke V, Kuhn LA. Virtual screening with solvation and ligand-induced complementarity. Perspectives in Drug Discovery and Design. 2000; 20:171–190. [Google Scholar]
Zsoldos Z, Reid D, Simon A, Sadjad BS, Johnson AP. eHiTS: An innovative approach to the docking and scoring function problems. Curr Protein Pept Sci. 2006;7(5):421–435. [PubMed] [Google Scholar]
Miranker A, Karplus M. Functionality maps of binding sites: A multiple copy simultaneous search method. Proteins. 1991;11(1):29–34. [PubMed] [Google Scholar]
Eisen MB, Wiley DC, Karplus M, Hubbard RE. HOOK: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins. 1994;19(3):199–221. [PubMed] [Google Scholar]
Bohm HJ. LUDI: Rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des. 1992;6(6):593606. [PubMed] [Google Scholar]
Goodsell DS, Lauble H, Stout CD, Olson AJ. Automated docking in crystallography: Analysis of the substrates of aconitase. Proteins. 1993;17(1):1–10. [ PubMed] [Google Scholar]
Hart TN, Read RJ. A multiple-start monte carlo docking method. Proteins. 1992;13(3):206–222. [PubMed] [Google Scholar]
Goodsell DS, Olson AJ. Automated docking of substrates to proteins by simulatedannealing. Proteins. 1990;8(3):195–202. [PubMed] [Google Scholar]
Abagyan R, Totrov M, Kuznetsov D. ICM-A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J.Comput. Chem. 1994; 15:488–506. [Google Scholar]
McMartin C, Bohacek RS. QXP: Powerful, rapid computer algorithms for structure- based drug design. J Comput Aided Mol Des. 1997;11(4):333–344. [PubMed] [Google Scholar]
Accelrys Inc., San Diego, CA, USA.
Oshiro CM, Kuntz ID, Dixon JS. Flexible ligand docking using a genetic algorithm. J Comput Aided Mol Des. 1995;9(2):113–130. [PubMed] [Google Scholar]
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein- ligand docking using gold. Proteins. 2003;52(4):609–623. [PubMed] [Google Scholar]
Brint AT, Willett P. Algorithms for the Identification of three-dimensional maximal common substructures. J. Chem. Inf. Comput. Sci. 1987; 27:152–158. [Google Scholar]
Fischer D, Norel R, Wolfson H, NussinovR. Surface motifs by a computer vision technique: Searches, detection, and implications for protein-ligand recognition. Proteins. 1993;16(3):278–292. [PubMed] [Google Scholar
Norel R, Fischer D, Wolfson HJ, Nussinov R. Molecular surface recognition by a computer vision-based technique. Protein Eng. 1994;7(1):39–46. [PubMed] [Google Scholar]
Miller MD, Kearsley SK, Underwood DJ, Sheridan RP. FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des. 1994;8(2):153–174. [PubMed] [Google Scholar]
Diller DJ, Merz KM., Jr. High throughput docking for library design and library prioritization. Proteins. 2001;43(2):113–124. [PubMed] [Google Scholar]
Burkhard P, Taylor P, Walkinshaw MD. An example of a protein ligand found by database mining: Description of the docking method and its verification by a2.3 A X-ray structure of a thrombin-ligand complex. J Mol Biol. 1998;277(2): 449–466. [PubMed] [Google Scholar]
DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem. 1986;29(11):2149–2153. [PubMed] [Google Scholar]
Kuntz ID, Leach AR. Conformational analysis of flexible ligands in macromolecular receptor sites. J. Comput. Chem. 1992; 13:730–748. [Google Scholar]
Kollman PA. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993; 93:2395– 2417. [Google Scholar]
Aqvist J, Luzhkov VB, Brandsdal BO. Ligand binding affinities from MD simulations. Acc Chem Res. 2002;35(6):358–365. [PubMed] [Google Scholar]
Carlson HA, Jorgensen WL. An extended linear response method for determining free energies of hydration. J Phys Chem. 1995; 99:10667–10673. [Google Scholar]
Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993;259(5100):1445– 1450. [PubMed] [Google Scholar]
Michel J, Verdonk ML, Essex JW. Protein- ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? J Med Chem. 2006;49(25):7427–7439. [PubMed] [Google Scholar]
Briggs JM, Marrone TJ, McCammon JA. Computational science new horizons and relevance to pharmaceutical design. Trends Cardiovasc. Med. 1996; 6:198–206. [PubMed] [Google Scholar]
Bohm HJ. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from design or 3D database search programs. J Comput Aided Mol Des. 1998;12(4):309–323. [PubMed] [Google Scholar]
Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally flexible docking by evolutionary programming. Chem Biol. 1995;2(5):317–324. [PubMed] [Google Scholar
Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW. Deciphering common failures in molecular docking of ligand-protein complexes. J Comput Aided Mol Des. 2000;14(8):731– 751. [PubMed] [Google Scholar]
Clark KP. Ajay, Flexible ligand docking without parameter adjustment across four ligand- receptor complexes. J Comput Chem. 1995; 16:1210–1226. [Google Scholar]
Taylor JS, Burnett RM. DARWIN: A program for docking flexible molecules. Proteins. 2000;41(2):173–191. [PubMed] [Google Scholar]
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117:5179–5197. [Google Scholar]
Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Jr., Weiner P. New force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984; 106:765–784. [Google Scholar]
Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983; 4:187–217. [Google Scholar]
Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidateâ^’DNA Helices. Journal of the American Chemical Society. 1998;120(37):9401–9409. [Google Scholar]
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. 3rd calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889– 897. [PubMed] [Google Scholar]
Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112(16):6127–6129. [Google Scholar]
Guimaraes CR, Mathiowetz AM. Addressing limitations with the MM-GB/SA scoring procedure using the WaterMap method and free energy perturbation calculations. J Chem Inf Model. 50(4):547–559. [PubMed] [Google Scholar]
Singh N, Warshel A. Absolute binding free energy calculations: On the accuracy of computational scoring of protein-ligand interactions. Proteins. 2010;78(7):1705– 1723. [PMC free article] [PubMed] [Google Scholar]
Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol. 1997;272(1):106–120. [PubMed] [Google Scholar]
Jain AN. Scoring noncovalent protein- ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996;10(5):427–440. [PubMed] [Google Scholar]
Head RD, Smythe ML, Oprea TI, Waller CL, Green SM, Marshall GR. VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands. J. Am. Chem. Soc. 1996; 118: 3959–3969. [Google Scholar]
Gehlhaar DK, Moerder KE, Zichi D, Sherman CJ, Ogden RC, Freer ST. Denovo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem. 1995;38(3):466–472. [PubMed] [Google Scholar]
Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des. 1997;11(5):425–445. [PubMed] [Google Scholar]
Muegge I, Martin YC. A general and fast scoring function for protein-ligand interactions: A simplified potential approach. J Med Chem. 1999;42(5):791– 804. [PubMed] [Google Scholar]
Lamb ML, Jorgensen WL. Computational approaches to molecular recognition. Curr Opin Chem Biol. 1997; 1: 449-457.
. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I. and Bourne, P. (2000) The Protein Data Bank, 1999 – In: International Tables for Crystallography, Eds. Rossmann, M. G. and Arnold, E. 67, 675–684
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., et al. (2016) PubChem substance and compound databases. Nucleic Acids Res., 44, D1202–D1213
Irwin, J. J. and Shoichet, B. K. (2005) ZINC–a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 45, 177–182
Martin, G. E., Hadden, C. E., Russell, D. J., Kaluzny, B. D., Guido, J. E., Duholke,W. K., Stiemsma, B. A., Thamann, T. J., Crouch, R. C., Blinov, K., et al. (2010) Identification of degradants of a complex alkaloid using NMR cryoprobe technology and ACD/ structure elucidator. J. Heterocycl. Chem., 39, 1241–1250.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. andWard, S. C. (2016) The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 72, 171–179
Kitchen, D. B., Decornez, H., Furr, J. R. and Bajorath, J. (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 3, 935–949.
Joseph-McCarthy, D., Baber, J. C., Feyfant, E., Thompson, D. C. and Humblet, C. (2007) Lead optimization via highthroughput molecular docking. Curr. Opin. Drug Discov. Devel., 10, 264–274
Ge, H.,Wang, Y., Li, C., Chen, N., Xie, Y., Xu, M., He, Y., Gu, X., Wu, R., Gu, Q., et al. (2013) Molecular dynamics-based virtual screening: accelerating the drug discovery process by highperformance computing. J. Chem. Inf. Model., 53, 2757–2764
Melville, J. L., Burke, E. K. and Hirst, J. D. (2009) Machine learning in virtual screening. Comb. Chem. High Throughput Screen., 12, 332–343
Gawehn, E., Hiss, J. A. and Schneider, G. (2016) Deep learning in drug discovery. Mol. Inform., 35, 3–14
Pereira, J. C., Caffarena, E. R. and Dos Santos, C. N. (2016) Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 56, 2495–2506
Pyzerknapp, E. O., Suh, C., Gómezbombarelli, R., Aguileraiparraguirre, J. and Aspuruguzik, A. (2015) What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res., 45, 45:195–216
Gschwend DA, Good AC, Kuntz ID. Molecular docking towards drug discovery. J Mol Recognit. 1996;9: 175-186
LG Ferreira, RN dos Santos, G Oliva, AD Andricopulo. Molecular docking and structure-based drug design strategies. Molecules. 2015; 20: 13384-13421.
S Agarwal, DK Jangir, R Mehrotra, N Lohani, M Rajeswari. A Structural Insight into Major Groove Directed Binding of Nitrosourea Derivative Nimustine with DNA: A Spectroscopic Study. PloS one. 2014; 9: 104115.
R. Mehrotra, DK Jangor, S Agarwal, B Ray, P Singh, A Srivastava. Interaction studies of anticancer drug lomustine with calf thymus DNA using surface enhanced Raman spectroscopy. MAPAN. 2013; 28: 273-277.
Agarwal S, Jangir DK, Singh P, Mehrotra R. Spectroscopic analysis of the interaction of lomustine with calf thymus DNA. J Photochem Photobiol B. 2014; 130: 281-286.
S Agarwal, DK Jangir, R Mehrotra. Spectroscopic studies of the effects of anticancer drug mitoxantrone interaction with calf thymus DNA. J Photochem Photobiol B. 2013; 120: 177-182.
S Agarwal, B Ray, R Mehrotra. SERS as an advanced tool for investigating chloroethyl nitrosourea derivatives complexation with DNA, International Journal of Biological Macromolecules. 2015; 81: 891-897.
Holt PA, Chaires JB, Trent JO. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. J Chem Inf Model. 2008; 48: 1602-1615.
Chen, Y. Z. and Zhi, D. G. (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 43, 217–226
Grinter, S. Z., Liang, Y., Huang, S. Y., Hyder, S. M. and Zou, X. (2011) An inverse docking approach for identifying new potential anti-cancer targets. J. Mol. Graph. Model., 29, 795–799
Chen, F., Wang, Z., Wang, C., Xu, Q., Liang, J., Xu, X., Yang, J., Wang, C., Jiang, T. and Yu, R. (2017) Application of reverse docking for target prediction of marine compounds with anti-tumor activity. J. Mol. Graph. Model., 77, 372–377
Xie, H., Lee, M. H., Zhu, F., Reddy, K., Huang, Z., Kim, D. J., Li, Y., Peng, C., Lim, D. Y., Kang, S., et al. (2013) Discovery of the novel mTOR inhibitor and its antitumor activities in vitro and in vivo. Mol. Cancer Ther., 12, 950–958
Liu, Z. P., Liu, S., Chen, R., Huang, X. and Wu, L. Y. (2017) Structure alignment-based classification of RNA-binding pockets reveals regional RNA recognition motifs on protein surfaces. BMC Bioinformatics, 18, 27
Mitchell JBO, Laskowski RA, Alex A, Thornton JM. Bleep-potential of mean force describing protein-ligand interactions: generating potential. J. Comput. Chem. 1999;20(11):1165–1176. [Google Scholar]
Ishchenko AV, Shakhnovich EI. SMall Molecule Growth 2001 (SMoG2001): An improved knowledge-based scoring function for protein-ligand interactions. J Med Chem. 2002;45(13):2770– 2780. [PubMed] [Google Scholar]
Feher M, Deretey E, Roy S. BHB: A simple knowledge-based scoring function to improve the efficiency of database screening. J Chem Inf Comput Sci. 2003;43(4):1316–1327. [PubMed] [Google Scholar]
Verkhivker G, Appelt K, Freer ST, Villafranca JE. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge- based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. Protein Eng. 1995;8(7):677–691. [PubMed] [Google Scholar]
Wallqvist A, Jernigan RL, Covell DG. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Protein Sci. 1995;4(9):1881–1903. [PMC free article] [PubMed] [Google Scholar]
Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J MoBiol. 2000;295(2):337–356. [PubMed] [Google Scholar
DeWitte RS, Shakhnovich EI. SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 1 Methodology and Supporting Evidence. J. Am. Chem. Soc. 1996; 118:11733– 11744. [Google Scholar]
Charifson PS, Corkery JJ, Murcko MA, Walters WP. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem. 1999;42(25):5100–5109. [PubMed] [Google Scholar]
Feher M. Consensus scoring for protein- ligand interactions. Drug Discov Today. 2006;11(9-10):421–428. [PubMed] [Google Scholar]
Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB. Consensus scoring for ligand/protein interactions. J Mol Graph Model. 2002;20(4):281–295. [PubMed] [Google Scholar]
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.