An Intelligent Diabetic Retinopathy Forecasting System using Modified Deep Neural Network

Authors

  • Anamika Raj
  • Noor Maizura Mohamad Noor
  • Rosmayati Mohemad
  • Noor Azliza Che Mat
  • Shahid Hussain
  • Shahid Hussain

DOI:

https://doi.org/10.52783/jns.v14.1566

Keywords:

Diabetic Retinopathy, Modified Deep Neural Network, Features Extraction

Abstract

Diabetic Retinopathy (DR) is a severe complication of diabetes that can lead to vision impairment and blindness if not detected and treated early. In this research, we propose an advanced forecasting system leveraging a Modified Deep Neural Network (DNN) to enhance the accuracy and efficiency of DR diagnosis. The proposed system integrates a deep learning framework with modifications tailored to the unique characteristics of retinal images affected by diabetes. We introduce specialized features extraction techniques and optimize the network architecture to accommodate the intricacies of diabetic retinal pathology. A comprehensive dataset comprising diverse retinal images is utilized for training and validating the modified DNN model. The experimental results demonstrate superior forecasting accuracy compared to existing methods, highlighting the effectiveness of the proposed approach in early detection and prognosis of diabetic retinopathy. This intelligent forecasting system holds significant promise for improving the clinical management of diabetic patients by facilitating timely intervention and reducing the risk of irreversible visual impairment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Vujosevic, S., Aldington, S. J., Silva, P., Hernández, C., Scanlon, P., Peto, T., & Simó, R. (2020). Screening for diabetic retinopathy: new perspectives and challenges. The Lancet Diabetes & Endocrinology, 8(4), 337-347.

Teo, Z. L., Tham, Y. C., Yu, M., Chee, M. L., Rim, T. H., Cheung, N., ... & Cheng, C. Y. (2021). Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology, 128(11), 1580-1591.

Antonetti, D. A., Silva, P. S., & Stitt, A. W. (2021). Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nature Reviews Endocrinology, 17(4), 195-206.

Qummar, S., Khan, F. G., Shah, S., Khan, A., Shamshirband, S., Rehman, Z. U., ... & Jadoon, W. (2019). A deep learning ensemble approach for diabetic retinopathy detection. Ieee Access, 7, 150530-150539.

Dai, L., Wu, L., Li, H., Cai, C., Wu, Q., Kong, H., ... & Jia, W. (2021). A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nature communications, 12(1), 3242.

Levin, L. A., Sengupta, M., Balcer, L. J., Kupersmith, M. J., & Miller, N. R. (2021). Report From the National Eye Institute Workshop on Neuro-Ophthalmic Disease Clinical Trial Endpoints: Optic Neuropathies. Investigative ophthalmology & visual science, 62(14), 30-30.

Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Maddikunta, P. K. R., & Srivastava, G. (2020). Deep neural networks to predict diabetic retinopathy. Journal of Ambient Intelligence and Humanized Computing, 1-14.

Grzybowski, A., Brona, P., Lim, G., Ruamviboonsuk, P., Tan, G. S., Abramoff, M., & Ting, D. S. (2020). Artificial intelligence for diabetic retinopathy screening: a review. Eye, 34(3), 451-460.

Forrester, J. V., Kuffova, L., & Delibegovic, M. (2020). The role of inflammation in diabetic retinopathy. Frontiers in immunology, 11, 583687.

Eswari, M. S., & Balamurali, S. (2022). An Optimal Diabetic Features-Based Intelligent System to Predict Diabetic Retinal Disease. In Computational Intelligence and Data Sciences (pp. 91- 106). CRC Press.

Simó-Servat, O., Hernández, C., & Simó, R. (2019). Diabetic retinopathy in the context of patients with diabetes. Ophthalmic research, 62(4), 211-217.

Skouta, A., Elmoufidi, A., Jai-Andaloussi, S., & Ouchetto, O. (2022). Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network. Journal of Big Data, 9(1), 1-24.

Reddy, S. S., Sethi, N., & Rajender, R. (2021). Discovering Optimal Algorithm to Predict Diabetic Retinopathy using Novel Assessment Methods. EAI Endorsed Transactions on Scalable Information Systems, 8(29), e1.

Shen, Z., Wu, Q., Wang, Z., Chen, G., & Lin, B. (2021). Diabetic Retinopathy Prediction by Ensemble Learning Based on Biochemical and Physical Data. Sensors, 21(11), 3663.

Jayanthi, J., Jayasankar, T., Krishnaraj, N., Prakash, N. B., Sagai Francis Britto, A., & Vinoth Kumar, K. (2021). An intelligent particle swarm optimization with convolutional neural network for diabetic retinopathy classification model. Journal of Medical Imaging and Health Informatics, 11(3), 803-809.

Özçelik, Y. B., & Altan, A. (2023). Overcoming nonlinear dynamics in diabetic retinopathy classification: a robust AI-based model with chaotic swarm intelligence optimization and recurrent long short-term memory. Fractal and Fractional, 7(8), 598.

Patil, M. S., & Chickerur, S. (2023). Study of data and model parallelism in distributed deep learning for diabetic retinopathy classification. Procedia Computer Science, 218, 2253-2263.

https://www.kaggle.com/datasets/mariaherrerot/idrid-dataset

Downloads

Published

2025-02-06

How to Cite

1.
Raj A, Mohamad Noor NM, Mohemad R, Azliza Che Mat N, Hussain S, Hussain S. An Intelligent Diabetic Retinopathy Forecasting System using Modified Deep Neural Network. J Neonatal Surg [Internet]. 2025Feb.6 [cited 2025Oct.4];14(1S):485-9. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/1566