In Silico Designing of CRISPR Grna And Vector to Knockout Tetracycline Resistant Gene (Teta Gene) Of Escherichia Coli

Authors

  • Bhaurao B. Choushette
  • Sarita L. Solunke
  • Rahul P. Bhagat
  • Rajendra A. Satpute

DOI:

https://doi.org/10.63682/jns.v14i7.5713

Keywords:

TetA, Guide RNA (sgRNA), Tetracycline Drug resistance, In silico, Escherichia coli

Abstract

The rise in antibiotic resistance is major issue, primarily driven by the horizontal gene transfer. Antibiotic resistance can’t be eliminated as long as antibiotics continue to be used for treating infectious diseases. TetA gene, encoding the efflux carrier in plasma membrane of bacteria, is major contributor of resistance against the tetracycline. E. coli, one of the opportunistic pathogens, presents serious threat to healthcare due to resistance against various antibiotics including tetracycline. CRISPR cas system, a form of bacterial acquired immunity, has gained much attention recently for its potential use in overcoming the spread of antibiotic resistance genes. In the present study, we performed in-silico gRNA and vector designing specific to TetA gene of E. coli to determine the effect of CRISPR cas system on spread of antibiotic resistance. Three computational tools, ChopChop Crispor and Benchling, were used to design the gRNAs. These in-silico tools were employed to predict a relevant list of gRNAs targeting the TetA gene.  Furthermore, the RNA fold web service was used to analyse the secondary structures of the lead single guide RNAs (sgRNAs) and gRNA1 was identified as the best candidate. The selection of the lead guide RNA involved designing target-specific oligonucleotides and sgRNAs using the NEBioCalculator tool. Subsequently, an in-silico construction of the guide RNA expression vector was carried out using SnapGene software. However, in vitro studies are required to determine whether the computationally predicted guide RNAs can effectively inhibit the TetA gene.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

research and development. The Lancet Infectious Diseases, 17(8), 799–801. https://doi.org/10.1016/S1473-3099(17)30404-8

.Levy, S. B., McMurry, L. M., & Barbosa, T. M. (1999). Tetracycline resistance mechanisms: An overview. In Tetracyclines in Biology, Chemistry and Medicine (pp. 317–339). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8727-3_17

Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P., & de la Cruz, F. (2010). Mobility of plasmids. Microbiology and Molecular Biology Reviews, 74(3), 434–452. https://doi.org/10.1128/MMBR.00020-10

.Laxminarayan, R., Sridhar, D., Blaser, M., Wang, M., & Woolhouse, M. (2016). Achieving global targets for antimicrobial resistance. Science, 353(6302), 874–875. https://doi.org/10.1126/science.aaf9286

Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., ... & Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569

Barrangou, R., & Marraffini, L. A. (2014). CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell, 54(2), 234–244. https://doi.org/10.1016/j.molcel.2014.03.011

Pursey, E., Sünderhauf, D., Gaze, W. H., Westra, E. R., & van Houte, S. (2018). CRISPR-Cas antimicrobials: challenges and future prospects. PLoS Pathogens, 14(6), e1006990. https://doi.org/10.1371/journal.ppat.1006990

.Bikard, D., Hatoum-Aslan, A., Mucida, D., & Marraffini, L. A. (2012). CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host & Microbe, 12(2), 177–186. https://doi.org/10.1016/j.chom.2012.06.003

.Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., ... & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32(11), 1146–1150. https://doi.org/10.1038/nbt.3043

.Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R., & Beisel, C. L. (2014). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 5(1), e00928-13. https://doi.org/10.1128/mBio.00928-13

Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145. https://doi.org/10.1038/nbt.3011

Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B., & Valen, E. (2016). CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Research, 44(W1), W272–W276. https://doi.org/10.1093/nar/gkw398

Concordet, J. P., & Haeussler, M. (2018). CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46(W1), W242–W245. https://doi.org/10.1093/nar/gky354

.Benchling. (n.d.). Biology Software. https://www.benchling.com

.Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., ... & Root, D. E. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 34(2), 184–191. https://doi.org/10.1038/nbt.3437

.Luo, M. L., Leenay, R. T., & Beisel, C. L. (2016). Current and future prospects for CRISPR-based tools in bacteria. Biotechnology and Bioengineering, 113(5), 930–943. https://doi.org/10.1002/bit.25851

Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., ... & Zhao, H. (2018). Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 9(1), 2475. https://doi.org/10.1038/s41467-018-04937-7

Cui, L., Vigouroux, A., Rousset, F., Varet, H., Khanna, V., Bikard, D. (2018). A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nature Communications, 9(1), 1912. https://doi.org/10.1038/s41467-018-04352-5

.Liu, X., Gallay, C., Kjos, M., Domenech, A., Slager, J., van Kessel, S. P., ... & Veening, J. W. (2017). High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Molecular Systems Biology, 13(5), 931. https://doi.org/10.15252/msb.20167449

.Peters, J. M., Koo, B. M., Patino, R., Heussler, G. E., Hearne, C. C., Qu, J., ... & Gross, C. A. (2016). Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nature Microbiology, 4(2), 244–250. https://doi.org/10.1038/s41564-018-0327-z

Cui, L., Vigouroux, A., Rousset, F., Varet, H., Khanna, V., Bikard, D. (2018). A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nature Communications, 9(1), 1912. https://doi.org/10.1038/s41467-018-04352-5

(Duplicate – already listed as entry #18)

.Wang, T., Guan, C., Guo, J., Liu, B., Wu, Y., Xie, Z., ... & Zhao, H. (2018). Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nature Communications, 9(1), 2475. https://doi.org/10.1038/s41467-018-04937-7

(Duplicate – already listed as entry #17)

.Yao, L., Cengic, I., Anfelt, J., & Hudson, E. P. (2016). Multiple gene repression in cyanobacteria using CRISPRi. ACS Synthetic Biology, 5(3), 207–212. https://doi.org/10.1021/acssynbio.5b00167

Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8(11), 2180–2196. https://doi.org/10.1038/nprot.2013.132

.Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

Rock, J. M., Hopkins, F. F., Chavez, A., Diallo, M., Chase, M. R., Gerrick, E. R., ... & Fortune, S. M. (2017). Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2, 16274. https://doi.org/10.1038/nmicrobiol.2016.274

Liu, Y., Wan, X., Wang, B. (2019). Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nature Communications, 10, 3693. https://doi.org/10.1038/s41467-019-11636-0

Huang, T. P., Newby, G. A., & Liu, D. R. (2021). Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 16(2), 1089–1128. https://doi.org/10.1038/s41596-020-00463-1

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424. https://doi.org/10.1038/nature17946

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471. https://doi.org/10.1038/nature24644

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4

Sun, Y., Zhang, X., Chen, Y., Guan, Z., Liu, Y., & Liu, W. (2015). A CRISPR-Cas9-based toolkit for fast and precise genome editing in Streptomyces. Scientific Reports, 5, 15291. https://doi.org/10.1038/srep15291

Zhao, W., Luo, H., & Wang, Y. (2019). A CRISPR-Cas9 based genetic engineering platform for fast and efficient genome editing in Streptomyces. Biotechnology and Bioengineering, 116(8), 1900–1910. https://doi.org/10.1002/bit.27007

Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J., ... & Koonin, E. V. (2020). Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83. https://doi.org/10.1038/s41579-019-0299-x

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., ... & Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827–832. https://doi.org/10.1038/nbt.2647

.Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., ... & Joung, J. K. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 32(6), 569–576. https://doi.org/10.1038/nbt.2908

.Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495. https://doi.org/10.1038/nature16526

.Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., & Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268), 84–88. https://doi.org/10.1126/science.aad5227

.Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J., & Church, G. M. (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nature Methods, 10(11), 1116–1121. https://doi.org/10.1038/nmeth.2681

.Karvelis, T., Gasiunas, G., Young, J. K., Bigelyte, G., Silanskas, A., Cigan, M., ... & Siksnys, V. (2015). Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biology, 16, 253. https://doi.org/10.1186/s13059-015-0818-7

.Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., ... & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038

Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I. M., Li, Y., ... & Nureki, O. (2016). Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell, 165(4), 949–962. https://doi.org/10.1016/j.cell.2016.04.003

Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517–521. https://doi.org/10.1038/nature17945

Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., ... & Zhang, F. (2017). Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology, 35(1), 31–34. https://doi.org/10.1038/nbt.3737

Gao, L., Cox, D. B., Yan, W. X., Manteiga, J. C., Schneider, M. W., Yamano, T., ... & Zhang, F. (2017). Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnology, 35(8), 789–792. https://doi.org/10.1038/nbt.3900

Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., ... & Koonin, E. V. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 13(11), 722-729. https://doi.org/10.1038/nrmicro3569

Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., & Yang, S. (2015). Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), 2506–2514. https://doi.org/10.1128/AEM.04023-14

Wang, Y., Wang, S., Chen, W., Song, L., Liu, L., Wang, Y., ... & Li, Y. (2018). CRISPR-Cas9 based genome editing for bacterial resistance: a review. Frontiers in Microbiology, 9, 1736. https://doi.org/10.3389/fmicb.2018.01736

Hoekstra, J. G., Hipp, M. J., Montserrat, D. A., Koster, M. J., & Kerr, D. E. (2020). Efficient CRISPR-Cas9-mediated gene editing in bacteria. Current Protocols in Molecular Biology, 130(1), e111. https://doi.org/10.1002/cpmb.111

Touchon, M., Rocha, E. P., & Brown, S. P. (2020). Regulation of horizontal gene transfer: selfish elements, endosymbiosis and the evolution of adaptive innovation. Nature Reviews Microbiology, 18(6), 362–376. https://doi.org/10.1038/s41579-020-0353-1

Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R., & Church, G. M. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257), 894–898. https://doi.org/10.1038/nature08187

Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31(3), 227–229. https://doi.org/10.1038/nbt.2501

O'Neill report on antimicrobial resistance: Funding for antimicrobial specialists should be improved. European Journal of Hospital Pharmacy, 26(3), 178. https://doi.org/10.1136/ejhpharm-2016-001013

World Bank. (2017). Drug-resistant infections: A threat to our economic future (Report No. 114679). World Bank. Retrieved from https://documents.worldbank.org/en/publication/documents-reports/documentdetail/323311493396993758.

Downloads

Published

2025-05-12

How to Cite

1.
Choushette BB, Solunke SL, P. Bhagat R, Satpute RA. In Silico Designing of CRISPR Grna And Vector to Knockout Tetracycline Resistant Gene (Teta Gene) Of Escherichia Coli. J Neonatal Surg [Internet]. 2025May12 [cited 2025Oct.23];14(7):405-21. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5713