Identification and characterization of class 1 integron among multidrug-resistant and Environmental Escherichia coli in Diyala

Authors

  • Dina N.A. Al-Obeidi
  • Hadi R. Rasheed Al-Taai
  • Kareem Ibrahim Mubarak

Keywords:

Integron, PCR detection, Gene cassettes, Antibiotic resistance, Escherichia coli

Abstract

This study examines the incidence and characteristics of the Class 1 integrons in the Escherichia coli isolates coming from clinical and environmental sources. 15 isolates were tested; thirteen (86.6%) of the 15 isolates tested positive for class 1 integron, whereas none of the other isolates, irrespective of class, had any introns found. The incidence of HS549/HS550 genes associated with 3’CS Clinical Integron among local Escherichia coli. Fifteen E. coli samples were screened for 3’CS Clinical Integron, a clinical class 1 intgrons marker. Eleven of the fifteen samples (73.3%) were positive with variable ranges and frequencies of MRG284/MRG285 genes associated with the environmental cassette among local E. coli. Fifteen E. coli samples were screened for the environmental cassette, a marker for environmental class 1 integrin. Ten out of fifteen clinical samples (66.6%) were integrons. After screening six of the isolates, the gene cassettes for class 1 integrons were detected in the six isolates, which include those encoding resistance to trimethoprim dfrA5, aminoglycosides aadA1, sulfonamides (sul1), mercury reductase (mer operon), and those encoding a novel transporter and a short chain (dehydrogenase/reductase) in the selected isolates, which confer resistance to trimethoprim/sulfamethoxazole and aminoglycosides, respectively. Fifteen different patterns or arrangements of the gene cassettes were found. Our results indicate that class 1 integrons are widely distributed among MDR-UPEC strains in Diyala, which may directly or indirectly contribute to the selection of MDR strains. These findings are important for better understanding the factors and mechanisms that promote multidrug resistance among UPEC strains. Also, more research is needed to understand the transfer of integrons from clinical to environmental bacteria. This study offers significant insights into disseminating integron-mediated resistance, emphasizing the critical role of integrons as a focal point in public health initiatives aimed at combating antibiotic resistance

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abad, E. D., Khameneh, A. and Vahedi, L. (2019). Identification

phenotypic and genotypic characterization of biofilm formation in

Escherichia coli isolated from urinary tract infections and their

antibiotics resistance. BMC Research Notes; 12 (1), 796.

Adelowo, O. O., Helbig, T., Knecht, C., Reincke, F., Mäusezahl, I., & Müller, J. A. (2018). High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS One, 13(11), e0208269.‏

Al-Shabender, G. A. A. I., & Al-Taai, H. R. R. (2023). Molecular typing and integron detection of multidrug-resistant Klebsiella pneumoniae clinical isolates recovered from Baquba Teaching Hospital in Iraq. Journal of Applied and Natural Science, 15(4), 1354-1362.‏

Baltazar, M., Bourgeois-Nicolaos, N., Larroudé, M., Couet, W., Uwajeneza, S., Doucet-Populaire, F., Ploy, M.-C. and Da Re, S. (2022) 'Activation of class 1 integron integrase is promoted in the intestinal environment', PLoS Genetics, 18(4), e1010177.

Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2013). An antibiotic-resistant class 3 integron in an Enterobacter cloacae isolate from hospital effluent. Clinical Microbiology and Infection, 19(7), E306-E308.‏

Barraud, O., et al. (2013). Antibiotic resistance in the environment. Environmental Microbiology Reports, 5(4), 543–549. https://doi.org/10.1111/1758-2229.12069

Bashir, S.; Haque, A.; Sarwar, Y. and Raza, A. (2015). Prevalence of Integrons and AntbiotcResistance among Uropathogenic Escherichia coli from Faisalabad Region of Pakistan. Archives of Clinical Microbiology.6 (4):9.

Bhat, B. A., Mir, R. A., Qadri, H., Dhiman, R., Almilaibary, A., Alkhanani, M., & Mir, M. A. (2023). Integrons in the development of antimicrobial resistance: critical review and perspectives. Frontiers in microbiology, 14, 1231938. https://doi.org/10.3389/fmicb.2023.1231938

Bissonnette, L. R. (1992) 'Imaging through fog and rain', Optical Engineering, 31(5), 1045-1052.

Boucher, Y., & Mazel, D. (2007). Integrons and resistance gene capture. Antibiotics and Bacterial Resistance in the Environment, 201–215. https://doi.org/10.1007/978-0-387-73555-5_14

Boucher, Y., & Mazel, D. (2007). Integrons and resistance gene capture. Antibiotics and Bacterial Resistance in the Environment, 201–215. https://doi.org/10.1007/978-0-387-73555-5_14

Cambray, G., Guerout, A. M., & Mazel, D. (2010). Integrons. Annual Review of Genetics, 44, 141–166. https://doi.org/10.1146/annurev-genet-102209-163504

Carattoli, A. (2001). Importance of integrons in the diffusion of resistance. Veterinary Research, 32(3-4), 243–259. https://doi.org/10.1051/vetres:2001129

Carattoli, A. (2001). Importance of integrons in the diffusion of resistance. Veterinary Research, 32(3-4), 243–259. https://doi.org/10.1051/vetres:2001129

Carmona-Salido, H., López-Solís, S., López-Hontangas, J. L., & Amaro, C. (2024). First Report of a Fatal Septicemia Case Caused by Vibrio metoecus: A Comprehensive Functional and Genomic Study. The Journal of Infectious Diseases, jiae481.

Carmona-Salido, H., López-Solís, S., López-Hontangas, J. L., & Amaro, C. (2024). First Report of a Fatal Septicemia Case Caused by Vibrio metoecus: A Comprehensive Functional and Genomic Study. The Journal of Infectious Diseases, jiae481.‏

Chen, S., Fu, J., Zhao, K., Yang, S., Li, C., Penttinen, P., . . . Li, J. (2023). Class 1 integron carrying qacEΔ1 gene confers resistance to disinfectant and antibiotics in Salmonella. International Journal of Food Microbiology, 404, 110319.

Clermont, O.; Christenson J.K.; Denamur, E.( 2013).The Clermont Escherichia coli phylotyping method revisited: improvement of specificity and detection of new phylogroups. Environ.Microbiol. Rep.

Collis, C. M., & Hall, R. M. (1995). Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrobial Agents and Chemotherapy, 39(1), 155–162. https://doi.org/10.1128/AAC.39.1.155

Courvalin, P. (1994). Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 38(7), 1447–1451. https://doi.org/10.1128/AAC.38.7.1447

Dadi, B.R., Abebe, T., Zhang, L., Mihret, A., Abebe, W., Amogne, W. (2020). Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infectious Diseases, 20(1), 1–12. DOI: 10.1186/s12879-020-4844-z

Desvaux, M., Dalmasso, G., Beyrouthy, R., Barnich, N., Delmas, J., and Bonnet, R. (2020). Pathogenicity Factors of Genomic Islands in

Intestinal and Extraintestinal Escherichia coli. Frontiers in

microbiology; 11, 2065.

Fonseca, É. L., & Vicente, A. C. (2022). Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms, 10(2), 224. https://doi.org/10.3390/microorganisms10020224

Fonseca, É. L., & Vicente, A. C. (2022). Integron functionality and genome innovation: an update on the subtle and smart strategy of integrase and gene cassette expression regulation. Microorganisms, 10(2), 224.‏

Fonseca, É. L., & Vicente, A. C. (2022). Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms, 10(2), 224. https://doi.org/10.3390/microorganisms10020224

Gestal, A. M., Liew, E. F., & Coleman, N. V. (2011). Natural transformation with synthetic gene cassettes: New tools for integron research and biotechnology. Microbiology, 157(12), 3349–3360. https://doi.org/10.1099/mic.0.051623-0

Gillings, M. R. (2014). Integrons: Past, present, and future. Microbiology and Molecular Biology Reviews, 78(2), 257–277. https://doi.org/10.1128/MMBR.00056-13

Gillings, M. R., & Paulsen, I. T. (2014). Microbial resistance gene catalogues as tools for assessing global threats to human health. Frontiers in Public Health, 2, 23. https://doi.org/10.3389/fpubh.2014.00023

González Zorn; B., & Escudero; J. A. (2012). Ecology of antimicrobial resistance: humans, animals, food and environment.‏

González-Zorn, B., & Escudero, J. A. (2012). Integrons in the antibiotic resistance era. Current Opinion in Microbiology, 15(5), 529–536. https://doi.org/10.1016/j.mib.2012.07.001

Halaji, M., Feizi, A., Mirzaei, A., Sedigh Ebrahim-Saraie, H., Fayyazi, A., & Ashraf, A., et al. (2020). The global prevalence of class 1 integron and associated antibiotic resistance in Escherichia coli from patients with urinary tract infections, a systematic review and meta-analysis. Microbial Drug Resistance, 26(10), 1208–1218. https://doi.org/10.1089/mdr.2019.0467

Holmes, A. H., et al. (2016). Global burden of antibiotic resistance. Lancet, 387(10014), 1575-1600. https://doi.org/10.1016/S0140-6736(15)00474-2

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808

Lang, K. (2015). Transcriptional regulation of incompatibility type A/C plasmids.‏

Leverstein-van Hall, M. A., Blok, H. E., Donders, A. R., Paauw, A., Fluit, A. C., & Verhoef, J. (2003). Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. Journal of Infectious Diseases, 187(2), 251–259. https://doi.org/10.1086/367711

Leverstein-van Hall, M. A., Blok, H. E., Donders, A. R., Paauw, A., Fluit, A. C., & Verhoef, J. (2003). Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. Journal of Infectious Diseases, 187(2), 251–259. https://doi.org/10.1086/367711

Márquez, C., Labbate, M., Ingold, A. J., Chowdhury, P. R., Ramírez, M. S., Centrón, D., Borthagaray, G., & Stokes, H. W. (2008). Recovery of a functional class 2 integron from an Escherichia coli strain mediating a urinary tract infection. Antimicrobial Agents and Chemotherapy, 52(11), 4159–4161. https://doi.org/10.1128/AAC.00710-08

Martinez-Freijo, P., Fluit, A. C., Schmitz, F. J., Grek, V. S., Verhoef, J., & Jones, M. E. (1998). Class 1 integrons in Gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. Journal of Antimicrobial Chemotherapy, 42(1), 1–7. https://doi.org/10.1093/jac/42.1.1

Mazel, D. (2006). Integrons: Agents of bacterial evolution. Nature Reviews Microbiology, 4(8), 608–620. https://doi.org/10.1038/nrmicro1462

Mazel, D. (2006). Integrons: agents of bacterial evolution. Nature Reviews Microbiology, 4(8):608-20.

Mohamed, I. Q., & Al-Taai, H. R. R. (2023). Phylogenetic Analysis of Klebsiella pneumoniae Isolated from Nosocomial and Community Infection in Diyala, Iraq. Iraqi Journal of Science, 2726-2740.‏

Najafi, M., Bastami, T. R., Binesh, N., Ayati, A., & Emamverdi, S. (2022). Sono-sorption versus adsorption for the removal of congo red from aqueous solution using NiFeLDH/Au nanocomposite: Kinetics, thermodynamics, isotherm studies, and optimization of process parameters. Journal of Industrial and Engineering Chemistry, 116, 489-503.‏

Néron, B., Littner, E., Haudiquet, M., Perrin, A., Cury, J., & Rocha, E. P. (2022). IntegronFinder 2.0: identification and analysis of integrons across bacteria, with a focus on antibiotic resistance in Klebsiella. Microorganisms, 10(4), 700.‏

Néron, Bertrand, Eloi Littner, Matthieu Haudiquet, Amandine Perrin, Jean Cury, and Eduardo P. C. Rocha. 2022. "IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella" Microorganisms 10, no. 4: 700. https://doi.org/10.3390/microorganisms10040700.

Partridge, S. R., Tsafnat, G., Coiera, E., & Iredell, J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 33(4), 757–784. https://doi.org/10.1111/j.1574-6976.2009.00175.x

Partridge, S. R., Tsafnat, G., Coiera, E., & Iredell, J. R. (2009). Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiology Reviews, 33(4), 757–784. https://doi.org/10.1111/j.1574-6976.2009.00175.x

Paterson, D. L. (2006). Resistance in gram-negative bacteria: Enterobacteriaceae. American Journal of Infection Control, 34(5), S20-S28. https://doi.org/10.1016/j.ajic.2006.05.238

Prokop, S., Perry, N. A., Vishnivetskiy, S. A., Toth, A. D., Inoue, A., Milligan, G., ... & Gurevich, V. V. (2017). Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Cellular signalling, 36, 98-107.‏

Stalder, T., Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2012). Integron involvement in environmental spread of antibiotic resistance. Frontiers in Microbiology, 3, 119. https://doi.org/10.3389/fmicb.2012.00119

Stalder, T., Barraud, O., Casellas, M., Dagot, C., & Ploy, M. C. (2012). Integron involvement in environmental spread of antibiotic resistance. Frontiers in Microbiology, 3, 119. https://doi.org/10.3389/fmicb.2012.00119

Stalder, T., Barraud, O., Jové, T., Casellas, M., Gaschet, M., Dagot, C., & Ploy, M.-C. (2014). Quantitative and qualitative impact of hospital effluent on dissemination of the integron pool. The ISME Journal, 8(4), 768–777. https://doi.org/10.1038/ismej.2013.213

Stokes, H. W., & Hall, R. M. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Molecular Microbiology, 3(12), 1669–1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x

Stokes, H. W., & Hall, R. M. (1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Molecular Microbiology, 3(12), 1669–1683. https://doi.org/10.1111/j.1365-2958.1989.tb00153.x

Sunde, M., & Norström, M. (2003). The prevalence of class 1 and class 2 integrons in Escherichia coli isolated from meat in Norway. Journal of Antimicrobial Chemotherapy, 56(6), 1019–1024. https://doi.org/10.1093/jac/dkg414

Sunde, M., Simonsen, G. S., Schau Slettemeås, J., Böckerman, I., & Norström, M. (2015). Integron, plasmid, and host strain characteristics of Escherichia coli from humans and food included in the Norwegian Antimicrobial Resistance Monitoring Programs. PLOS ONE, 10(6), e0128797. https://doi.org/10.1371/journal.pone.0128797

Sütterlin, S., Bray, J. E., Maiden, M. C., & Tano, E. (2020). Distribution of class 1 integrons in historic and contemporary collections of human pathogenic Escherichia coli. PLoS One, 15(6), e0233315.‏

Toleman, M. A., Walsh, T. R., & Comandatore, F. (2016). The discovery and role of integrons and transposons in antibiotic resistance in Gram-negative bacteria. Antimicrobial Resistance and Infection Control, 5, 64. https://doi.org/10.1186/s13756-016-0151-z

Van Essen-Zandbergen, A. M. M., Smith, A., Veldman, A., & Mevius, D. (2007). Occurrence and characteristics of class 1, 2, and 3 integrons in Escherichia coli, Salmonella, and Campylobacter spp. in the Netherlands. Journal of Antimicrobial Chemotherapy, 59(4), 746–750. https://doi.org/10.1093/jac/dkm014

Wright, G. D. (2007). The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology, 5(3), 175–186. https://doi.org/10.1038/nrmicro1614

Wright, G. D. (2007). The antibiotic resistome: The nexus of chemical and genetic diversity. Nature Reviews Microbiology, 5(3), 175–186. https://doi.org/10.1038/nrmicro1614.

..

Downloads

Published

2025-05-19

How to Cite

1.
Al-Obeidi DN, Al-Taai HRR, Mubarak KI. Identification and characterization of class 1 integron among multidrug-resistant and Environmental Escherichia coli in Diyala. J Neonatal Surg [Internet]. 2025May19 [cited 2025Sep.22];14(25S):184-97. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6100