Enhancing Anti-Infective Activity through Structural Adaptability and Synthesis of Quinolone Analogues: Comprehensive Review
DOI:
https://doi.org/10.63682/jns.v14i8.8389Keywords:
Fluoroquinolones (FQs), Antibacterial agents, Anticancer activity, Urinary tract infections (UTIs), Antimicrobial agents, AntioxidantAbstract
Fluoroquinolones (FQs) are a widely used class of antibacterial agents, renowned for their excellent physicochemical and pharmacokinetic properties. Their flexibility in synthesis and ease of modification have led to the development of therapeutically beneficial analogues with improved antibacterial activities. Interestingly, recent studies have shown that certain derivatives of ciprofloxacin and norfloxacin exhibit enhanced anticancer properties in different kinds of cancer cells. This project goal is to investigate the structure-activity relationship of fluoroquinolone derivatives, focusing on their antimicrobial and anticancer potential. In order to combat urinary tract infections (UTIs), the project will investigate the creation of new FQ derivatives with enhanced antibacterial properties. prevalent and debilitating condition. Additionally, the anticancer properties of these derivatives will be evaluated, with the ultimate goal of identifying promising leads for the treatment of UTIs and cancer. The results of this study might help create more focused and efficient treatments, tackling the rising issues of cancer therapy and antibiotic resistance.
Downloads
References
Kloskowski T, Frąckowiak S, Adamowicz J, Szeliski K, Rasmus M, Drewa T, Pokrywczyńska M. Quinolones as a potential drug in genitourinary cancer treatment—A literature review. Front Oncol. 2022;12:890337.
Nicolle LE. Urinary tract infection: Traditional pharmacologic therapies. Am J Med. 2002;113 Suppl 1A:35–44.
Idowu T, Schweizer F. Ubiquitous nature of fluoroquinolones: The oscillation between antibacterial and anticancer activities. Antibiotics. 2017;6(4):26.
Abdel‐Aal MA, Abdel‐Aziz SA, Shaykoon MSA, Abuo‐Rahma GEDA. Towards anticancer fluoroquinolones: A review article. Arch Pharm (Weinheim). 2019;352(7): e1800376.
Sharma PC, Goyal R, Sharma A, Sharma D, Saini N, Rajak H, et al. Insights on fluoroquinolones in cancer therapy: Chemistry and recent developments. Mater Today Chem. 2020;17:100296.
Ahmed A, Daneshtalab M. Nonclassical biological activities of quinolone derivatives. J Pharm Pharm Sci. 2011;15(1):52–72.
Naeem A, Badshah SL, Muska M, Ahmad N, Khan K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules. 2016;21(3):268.
Mitscher LA. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem Rev. 2005;105(2):559–92.
Huang CY, Yang JL, Chen JJ, Tai SB, Yeh YH, Liu PF, et al. Fluoroquinolones suppress TGF-β and PMA-induced MMP-9 production in cancer cells: Implications in repurposing quinolone antibiotics for cancer treatment. Int J Mol Sci. 2021;22(21):11602.
Wagenlehner FME, Bjerklund Johansen TE, Cai T, Koves B, Kranz J, Pilatz A, et al. Epidemiology, definition and treatment of complicated urinary tract infections. Nat Rev Urol. 2020;17(10):586–600.
Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5): e103–20.
Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N Engl J Med. 1991;324(6):384–94.
Sandberg T, Skoog G, Hermansson AB, Kahlmeter G, Kuylenstierna N, Lannergard A, et al. Ciprofloxacin for 7 days versus 14 days in women with acute pyelonephritis: A randomized, open-label and double-blind, placebo-controlled, non-inferiority trial. Lancet. 2012;380(9840):484–90.
van Nieuwkoop C, van der Starre WE, Stalenhoef JE, van Aartrijk AM, van der Reijden TJK, Vollaard AM, et al. Treatment duration of febrile urinary tract infection: A pragmatic randomized, double-blind, placebo-controlled non-inferiority trial in men and women. BMC Med. 2017;15:70.
Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22(8):438–45.
Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7(2):337–41.
World Health Organization. WHO Global Lists of High Burden Countries for Tuberculosis (TB), TB/HIV and Multidrug/rifampicin-Resistant TB (MDR/RR-TB), 2021–2025: Background Document. 2021. Available from: https://apps.who.int/iris/handle/10665/341980
World Health Organization. Guidelines: Updated Recommendations on HIV Prevention, Infant Diagnosis, Antiretroviral Initiation and Monitoring. 2021. Available from: https://apps.who.int/iris/handle/10665/340190
Stojanovic Z, Goncalves-Carvalho F, Marin A, Dominguez JA, Latorre I, Lacoma A, et al. Advances in diagnostic tools for respiratory tract infections: from tuberculosis to COVID-19–changing paradigms? ERJ Open Res. 2022;9(1):001–5.
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–55.
. Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev. 2021;44. https://doi.org/10.1093/femsre/fuaa001
. Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22:416–22. https://doi.org/10.1016/j.cmi.2015.12.002
. Zhu Y, Huang WE, Yang Q. Clinical perspective of antimicrobial resistance in bacteria. Infect Drug Resist. 2022;15:735–46. https://doi.org/10.2147/idr.s345574
. Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One. 2017;12:e0189621. https://doi.org/10.1371/journal.pone.0189621
. Zaman S, Hussain M, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9:e1403. https://doi.org/10.7759/cureus.1403
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem. 2022;244:114888. https://doi.org/10.1016/j.ejmech.2022.114888
. Durcik M, Nyerges A, Skok Z, Gramec Skledar D, Trontelj J, Zidar N, et al. New dual ATP-competitive inhibitors of bacterial DNA gyrase and topoisomerase IV active against ESKAPE pathogens. Eur J Med Chem. 2021;213:113200. https://doi.org/10.1021/acs.jmedchem.2c01597
. Kong Q, Yang Y. Recent advances in antibacterial agents. Bioorg Med Chem Lett. 2021;35:127799. https://doi.org/10.1016/j.bmcl.2021.127799
. Liu H, Mulholland SG. Appropriate antibiotic treatment of genitourinary infections in hospitalized patients. Am J Med. 2005;118:14–20. https://doi.org/10.1016/j.amjmed.2005.05.009
. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416. https://doi.org/10.1164/rccm.200405-644ST
Jia Y, Zhao L. The antibacterial activity of fluoroquinolone derivatives: an update (2018–2021). Eur J Med Chem. 2021;224:113741. https://doi.org/10.1016/j.ejmech.2021.113741
. Sharma V, Das R, Gupta DKMS, Venugopala KN, Mailavaram R, Nair AB, et al. Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem. 2022;59:116674. https://doi.org/10.1016/j.bmc.2022.116674
. Sadiq AS, Khudhair ZT, Yousif SA, Mahmood WA. Synthesis, identification, theoretical study, and effect of the new heterocyclic system from ciprofloxacin derivatives on the activity of some liver enzymes. Baghdad Sci J. 2022;19(6):1454. http://dx.doi.org/10.21123/bsj.2022.19.4.ID0000
. Tabassum R, Ashfaq M, Oku H. Current pharmaceutical aspects of synthetic quinoline derivatives. Mini Rev Med Chem. 2021;21(10):1152–72. https://doi.org/10.2174/13895575209992012142347
. Persoons L, Vanderlinden E, Vangeel L, Wang X, Do ND, Foo SY, et al. Broad-spectrum anti-coronavirus activity of a series of anti-malaria quinoline analogues. Antiviral Res. 2021;193:105127. https://doi.org/10.1016/j.antiviral.2021.105127
. Panda P, Chakroborty S. Navigating the synthesis of quinoline hybrid molecules as promising anticancer agents. ChemistrySelect. 2020;5(33):10187–99. https://doi.org/10.1002/slct.202002790
Man RJ, Jeelani N, Zhou C, Yang YS. Recent progress in the development of quinoline derivatives for exploitation of anticancer agents. Med Chem. 2021;21(7):825–38. https://doi.org/10.2174/1871520620666200516150345
Patel KB, Kumari P. A review: structure-activity relationship and antibacterial activities of quinoline-based hybrids. J Mol Struct. 2022;1268(1):133634. https://doi.org/10.1016/j.molstruc.2022.133634
. Zeleke D, Eswaramoorthy R, Belay Z, Melaku Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J Chem. 2020;2020(1):1–16. https://doi.org/10.1155/2020/1324096
Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother. 2017;72(8):2263–72. https://doi.org/10.1093/jac/dkx117
. Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. J Adv Microbial. 2020;14(1):37–69. https://doi.org/10.1007/5584_2019_428
Ajani OO, Yaya KT, Ademosun OT. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs–a review. RSC Adv. 2022;12(29):18594–18614. https://doi.org/10.1039/D2RA02896D
. Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg Med Chem. 2021;32(1):115973. https://doi.org/10.1016/j.bmc.2020.115973
. Savegnago L, Vieira AI, Seus N, Goldani BS, Castro MR, Lenardão EJ, et al. Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Lett. 2013;54(1):40–4. https://doi.org/10.1016/j.tetlet.2012.10.067
Ghanim AM, Girgis AS, Kariuki BM, Samir N, Said MF, Abdelnaser A, et al. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg Chem. 2022;119(1):105557. https://doi.org/10.1016/j.bioorg.2021.105557
. George RF, Samir EM, Abdelhamed MN, Abdel Aziz HA, Abbas SE. Synthesis and anti-proliferative activity of some new quinoline-based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg Chem. 2019;83(1):186–97. https://doi.org/10.1016/j.bioorg.2018.10.038
. Borsoi AF, Alice LM, Sperotto N, Ramos AS, Abbadi BL, Macchi Hopf FS, et al. Antitubercular activity of novel 2-(quinoline-4-yloxy)acetamides with improved drug-like properties. ACS Med Chem Lett. 2022;13(8):1337–44. https://doi.org/10.1021/acsmedchemlett.2c00254
. Al-Hussein IR, Al-Shuhaib ZA. Synthesis and characterization of some new pyridine and pyrimidine derivatives and studying their biological activities. Baghdad Sci J. 2022. https://doi.org/10.21123/bsj.2022.7012
. Godoy-Vitorino F. Human microbial ecology and the rising new medicine. Ann Transl Med. 2019;7(14):342. https://doi.org/10.21037/atm.2019.06.56
. Ibraheem DR, Hussein NN, Sulaiman GM. Antibacterial activity of silver nanoparticles against pathogenic bacterial isolates from diabetic foot patients. Iraqi J Sci. 2023;64(5):2223–39. https://doi.org/10.24996/ijs.2023.64.5.11
. Talbot HG, Bradley J, Edwards EJ, Gilbert D, Scheld M, Bartlett GJ. Clin Infect Dis. 2006;42:657–68.
. Theuretzbacher U, Toney HJ. Curr Opin Investig Drugs. 2006;7:158–66.
. Dang Z, Yang YS, Ji RY, Zhang SH. Bioorg Med Chem Lett. 2007;17:4523–6.
Zhang YB, Feng LS, You XF, Guo Q, Guo HY, Liu ML. Arch Pharm Chem Life Sci. 2010;343:143–51.
. Wang JX, Guo Q, Chai Y, Feng LS, Guo HY, Liu ML. Chin Chem Lett. 2009;21:55–8.
. Chai Y, Wan ZL, Wang B, Guo HY, Liu ML. Eur J Med Chem. 2009;44:4063–9.
. Wang XY, Guo Q, Wang YC, Liu BQ, Liu ML, Sun LY, Guo HY. Acta Pharm Sin. 2008;43:819–27.
. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official ATS/CDC/IDSA clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.
. Muñoz CMM, Basurto VAD, Anchundia JPC, Martinetti GGH. Descripción y análisis de infecciones respiratorias agudas en niños menores de 5 años. Polo Conoc. 2021;6(9):1108–23.
. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11:1722.
. Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W, Rossi GA. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr. 2022;10:1051079.
Diego-Rodríguez M, Domínguez-Cortinas G, Cubillas-Tejeda AC, Galindo Mendoza MG. Infecciones respiratorias agudas y caracterización de las bacterias potencialmente patógenas comensales de la Huasteca Potosina. Rev Salud Pública Nutr. 2020;18(4):1–8.
. de Souza MVN. Mini Rev Med Chem. 2005;5:1009–17.
. Anquetil G, Greiner J, Mahmoud N, Santillana-Hayat M, Gonzalez R, Farhati K, et al. Eur J Med Chem. 2006;41:1478–93.
. Nakhaei A, Ramezani S, Shams-Najafi SJ, Farsinejad S. Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones. Lett Org Chem. 2018;15(9):739–46.
. Ozdemir SB, Demibras N, Demibras A, Ayaz FA, Çolak N. Microwave-assisted synthesis, antioxidant, and antimicrobial evaluation of piperazine-azole-fluoroquinolone based 1,2,4-triazole derivatives. J Heterocycl Chem. 2018;55(12):2744–59.
. Nakhaei A, Davood Nia A, Yadegar Ian S. An efficient green approach for the synthesis of fluoroquinolones using nano zirconia sulfuric acid as highly efficient recyclable catalyst in two forms of water. Iran J Chem Chem Eng. 2018;37(3):33–42.
. Guruswamy B, Arul R. Synthesis and antimicrobial evaluation of substituted benzimidazolyl fluoroquinolones under conventional and microwave irradiation conditions. Heterocycl Commun. 2012;18(4):203–6.
. Mermer A, Faiz O, Demibras A, Demibras N, Alagumuthu M, Arumugam S. Piperazine-azole-fluoroquinolone hybrids: conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg Chem. 2019;85:308–18.
. Mohammed AA, Farhan AM. Modification on ciprofloxacin moiety to synthesize some new derivatives with screening antibacterial activity. Baghdad Sci J. 2024;21(7):2360–.
. Turel I. Coord Chem Rev. 2002;232:27–47.
. Mitscher LA. Chem Rev. 2005;105:559–92.
. Kaur H, Dhir K, Jaspreet KU, Mittu B, Chuhan A. Am J Drug Discov Dev. 2013;3:13–22.
. Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Bedeck RM. Quinolone analogues of benzothiazines: synthesis, antitubercular structure–activity relationship and ADME profiling. Eur J Med Chem. 2023;258:115539.
. Fedorowicz J, Barczewski J, Konopacka A, Waleron K, Lejnowski D, Ciura K, et al. Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents. Eur J Med Chem. 2019;179:576–90. https://doi.org/10.1016/j.ejmech.2019.06.071
Wallace MD, Waraich NF, Debowski AW, Corral MG, Maxwell A, Mylne JS, et al. Developing ciprofloxacin analogues against plant DNA gyrase: a novel herbicide mode of action. Chem. 2018;54:1869–72. https://doi.org/10.1039/c7cc09518j
Koga H, Itoh A, Murayama S, Suzue S, Irikura T. Structure–activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem. 1980;23:1358–63. https://doi.org/10.1021/jm00186a014
. Fedorowicz J, Cruz CD, Morawska M, Ciura K, Gilbert-Girard S, Mazur L, et al. Antibacterial and antibiofilm activity of permanently ionized quaternary ammonium fluoroquinolones. Eur J Med Chem. 2023;254:115373. https://doi.org/10.1016/j.ejmech.2023.115373
. Takagi N, Fubasami H, Matsukubo H. Chem Abstr. 1992;116:152003. EP464823.
. Wang JX, Liu ML, Cao J, Wang YC. Acta Crystallogr E. 2008;64:o2294.
. Chrzanowska A, et al. The cytotoxic effect of copper(II) complexes with halogenated 1,3-disubstituted arylthioureas on cancer and bacterial cells. Int J Mol Sci. 2021;22(21):–. https://doi.org/10.3390/ijms222111347
. Billerica A, Grotowski A, Augustynowicz-Kopec E, Orzelska-Górka J, Kuopińska-Piec D, Strugar M. In vitro antimycobacterial activity and interaction profiles of diarylthiourea–copper(II) complexes with antitubercular drugs against Mycobacterium tuberculosis isolates. Tuberculosis. 2023;143:102412. https://doi.org/10.1016/j.tube.2023.102412
. Azargun R, Gholizadeh P, Sadeghi V, et al. Molecular mechanisms associated with quinolone resistance in Enterobacteriaceae: review and update. Trans R Soc Trop Med Hyg. 2020;114:770–81. https://doi.org/10.1093/trstmh/traa041
8. Redgrave L, Sutton S, Webber M, et al. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45. https://doi.org/10.1016/j.tim.2014.04.007
. Tang K, Zhao H. Quinolone antibiotics: resistance and therapy. Infect Drug Resist. 2023;16:811–20..
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.