Synthesis and Catalytic Properties of Palladium-N-Heterocyclic Carbene Complexes for cancer therapy: A comprehensive Review
DOI:
https://doi.org/10.63682/jns.v14i7.9172Keywords:
Heterocyclic compound, Anticancer activity, catalyst, Palladium-N- heterocyclic carbeneAbstract
Heterocyclic compounds, characterized by cyclic structures containing heteroatoms such as nitrogen, oxygen, or sulphur, play a pivotal role in medicinal chemistry due to their diverse biological activities and applications in treating various diseases, including cancer. This research paper explores the synthesis and catalytic properties of novel palladium-N-heterocyclic carbene (NHC) complexes, specifically PEPPSI-type complexes, highlighting their effectiveness in facilitating direct arylation reactions of heterocycles. The study presents the synthesis of new imidazolinium salts and their conversion into stable palladium complexes with notable catalytic activity for arylation processes. Additionally, it examines the synthesis of spiro isoxazole-5-one derivatives and the development of iron-catalysed methodologies for generating pyrimidine and benzo carbazole derivatives, underlining the significance of iron catalysts in organic transformations. The research emphasizes the importance of optimizing reaction conditions and utilising earth-abundant catalysts to enhance the sustainability of chemical processes while achieving high yields and selectivity. Through mechanistic insights and experimental findings, this work contributes to the ongoing advancement of synthetic methodologies for producing heterocyclic compounds, which are essential in developing new therapeutic agents.
Downloads
Metrics
References
M. Gupta, Int. J. Physical, Chem. Mat. Sci., 2015, 4(1), 21-24.
M.S. Saini, A. Kumar, J. Dwivedi, R. Singh, Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
R. Ciriminna, M. Pagliaro, R. Luque, Green Energy & Environ 6 (2) (2021) 161–166.
C. Baleizao, H. Garcia, Chem. Rev. 106 (9) (2006) 3987–4043.
S. Semwal, A.K. Arora, R.P. Badoni, D.K. Tuli, Bioresour. Technol. 102 (3) (2011) 2151–2161.
K. Sarkar, M. Nandi, M. Islam, M. Mubarak, A. Bhaumik, Appl. Catal. A: Gen. 352 (2009) 81.
A. Corma, H. Garcia, A. Leyva, J. Mol. Catal. A: Chem. 230 (2005) 97.
S. Paul, J.H. Clark, Green Chem. 5 (2003) 635.
V. Polshettiwar, C. Len, A. Fihri, Coord. Chem. Rev. 253 (2009) 2599.
N.T.S. Phan, D.H. Brown, P. Styring, Tetrahedron Lett. 45 (2004) 7915.
V. Polshettiwar, R.S. Varma, Tetrahedron 64 (2008) 4637
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249
. Ferlay J, Colombet M, Soerjomataram I et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149(4):778–789
Cooper G, Adams K (2022) The cell: a molecular approach Oxford University Press.
S.P. Nolan (Ed.), N-Heterocyclic Carbenes in Synthesis, Wiley, Weinheim, 2006;
W.A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. 36 (1997) 2163–2187;
W.A. Herrmann, M. Elison, J. Fischer, C. Kocher, G.R.J. Artus, Angew. Chem.Int. Ed. 34 (1995) 2371–2374;
E.A.B. Kantchev, C.J. OBrien, M.G. Organ, Aldrichim. Acta 39 (2006) 97–111; [19] M.G. Organ, G.A. Chass, D.-C. Fang, A.C. Hopkinson, C. Valente, Synthesis 17 (2008) 2776–2797;
X.X. He, Y. Li, B.B. Ma, Z. Ke, F.S. Liu, Organometallics 35 (2016) 2655–2663;
İ. Özdemir, Y. Gök, Ö. Özeroğlu, M. Kaloğlu, H. Doucet, C. Bruneau, Eur. J. Inorg. Chem. 12 (2010) 1798–1805;
H. Kromann, F.A. Sløk, T.N. Johansen, P. Krogsgaard-Larsen, Tetrahedron 57 (2001) 2195–2201;
T. Sakamoto, Y. Kondo, D. Uchiyama, H. Yamanaka, Tetrahedron 47 (1991) 5111–5118;
N. Nakamura, Y. Tajima, K. Sakai, Heterocycles 17 (1982) 235–245;
Y. Fall, C. Reynaud, H. Doucet, M. Santelli, Eur. J. Org. Chem. 24 (2009) 4041–4050.
C.J. O’Brien, E.A.B. Kantchev, G.A. Chass, N. Hadei, A.C. Hopkinson, M.G. Organ, D.H. Setiadi, T.-H. Tang, D.-C. Fang, Tetrahedron 61 (2005) 9723–9735.
G.A. Chass, C.J.O. Brien, N. Hadei, E.A.B. Kantchev, W.-H. Mu, D.-C. Fang,
A.C. Hopkinson, I.G. Csizmadia, M.G. Organ, Chem. Eur. J. 15 (2009) 4281–4288;
B.-B. Feng, J. Xu, M.-M. Zhang, X.-S. Wang, Synthesis2016, 48, 65–72;
Selected reviews:a) L. Wang, J. Xiao, Adv. Synth. Catal.2014, 356, 1137–1171;
P. F. Wang, C. H. Jiang, X. Wen, Q. L. Xu, H. Sun, J. Org. Chem.2015, 80, 1155–1162;
G. Zhou, J. Zhang, Chem. Commun.2010, 46, 6593–6595;
T. Zhao, H. Zhang, L. Cui, J. Qu, B. Wang, RSC Adv.2015, 5, 86056–86060.
B. Blank and R. Kempe, J. Am. Chem. Soc., 2010, 132, 924–925.
Y. Obora, S. Ogawa and N. Yamamoto, J. Org. Chem., 2012, 77, 9429–9433.
T.-Y. Feng, H.-X. Li, D. J. Young and J.-P. Lang, J. Org. Chem., 2017,82, 4113–4120.
Y. Nakamura, A. Azuma, S. Kato, Y. Oe and T. Ohta, Chem. Lett,2019, 48, 1192–1195.
C. Chaudhari, S. M. A. Hakim Siddiki and K.-I. Shimizu, Tetrahedron Lett., 2013, 54, 6490–6493.
M. Vellakkaran, J. Das, S. Bera and D. Banerjee, Chem. Commun,2018, 54, 12369–12372.
A. Mishra, A. D. Dwivedi, S. Shee and S. Kundu, Chem. Commun, 2020, 56, 249–252.
B. Maji and M. K. Barman, Synthesis, 2017, 3377–3393;
M. Pen˜a-Lo´pez, P. Piehl, S. Elangovan, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2016, 55, 14967–14971; (
D. A. Valyaev, G. Lavigne and N. Lugan, Coord. Chem. Rev., 2016, 308,191–235.
M. K. Barman, S. Waiba and B. Maji, Angew. Chem., Int. Ed., 2018, 57, 9126–9130.
S. Sinha, S. Das, R. Sikari, S. Parua, P. Brandaõ, S.Demeshko, F. Meyer, N. D. Paul, Inorg. Chem. 2017,56, 14084−14100;
S. Sinha, R. Sikari, V. Sinha, U.Jash, S. Das, P. Brandão, S. Demeshko, F. Meyer, B.
de Bruin, N. D. Paul, Inorg. Chem. 2019, 58, 1935−1948.
N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 2015, 137, 12804–12807;
N. Deibl, R. Kempe, Angew. Chem. Int. Ed. 2017, 56,1663 –1666.
S. S. Poly, S. M. A. H. Siddiki, A. S. Touchy, K.W.Ting, T. Toyao, Z. Maeno, Y. Kanda, K-i. Shimizu, ACS Catal. 2018, 8, 11330−11341;
M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543−15546.
Wang S, Folkes A, Chuckowree I et al (2004) Studies on pyrrolopyrimidines as selective inhibitors of multidrug-resistance-associated protein in multidrug resistance. J Med Chem 47(6):1329–1338.
Hr B, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical beneft with gemcitabine as frst-line therapy.
Zhang, L., Liu, Y., Deng, L., 2014. Three-coordinate cobalt (IV) and cobalt (V) imido complexes with N-heterocyclic carbene ligation:synthesis, structure, and their distinct reactivity in C-H bond amination. J. Am. Chem. Soc. 136 (44), 15525–15528.
Zhao, D. et al, 2014. Iron-catalyzed oxidative synthesis of N heterocycles from primary alcohols. RSC Adv. 4 (13), 6486–6489.
Protti, S., Fagnoni, M., Ravelli, D., 2015. Photocatalytic C H Activation by Hydrogen-Atom Transfer in Synthesis. Chem CatChem 7 (10), 1516–1523.
Qin, P. et al, 2020. Transition-Metal Catalysis of Triene 6p Electrocyclization: The p-Complexation Strategy Realized. Angew. Chem. Int. Ed. 59 (41), 17958–17965.
Fujimura,T.;Aoki, S.;Nakamura,E. Synthesis of 1,4-keto esters and 1,4-diketones via palladium-catalyzed acylation of siloxy cyclopropanes. Synthetic and mechanistic studies. J. Org. Chem. 1991, 56, 2809−2821.
Lan, X.-W.; Wang, N.-X.; Zhang, W.; Wen, J.-L.; Bai, C.-B.; Xing, Y.; Li, Y.-H. Copper/manganese catalyzed oxidative coupling of vinyl arenes with ketones. Org. Lett. 2015, 17, 4460−4463.
Li, Y.; Shang, J. Q.; Wang, X.-X.; Xia, W.-J.; Yang, T.; Xin, Y.; Li, Y. M. Copper-catalyzed decarboxylative oxyalkylation of alkynyl carboxylic acids: synthesis of γ-diketones and γ-ketonitriles. Org. Lett. 2019, 21, 2227−2230.
Zhang, F.; Du, P.; Chen, J.; Wang, H.; Luo, Q.; Wan, X. Co-catalyzed synthesis of 1,4-dicarbonyl compounds using TBHP oxidant. Org. Lett. 2014, 16, 1932−1935.
Palani, P.; Arumugam, A.; Raja, D.; Muthu, K.; Senadi, G. C. Photoredox-catalyzed 1,2-oxo alkylation of vinyl arenes with 1,3 diketones: An approach to 1,4-dicarbonyls via C−C activation. Chem. Commun. 2023, 59, 11433−11436.
Pal, A.; Thakur, A. One-pot synthesis of dimerized arenes and heteroarenes under mild conditions using Co(I) as an active catalyst. Org. Biomol. Chem. 2022, 20, 8977−8987.
Ren, L.; Luo, J.; Tan, L.; Tang, Q. Titanium-mediated domino cross-coupling/cyclodehydration and aldol-addition/cyclocondensation: concise and regioselective synthesis of polysubstituted and fused furans. J. Org. Chem. 2022, 87, 3167−3176.
Peng, H.; Yu, J. T.; Jiang, Y.; Yang, H.; Cheng, J. Di-tert-butyl peroxide-promoted α-alkylation of α-amino carbonyl compounds by simple alkanes. J. Org. Chem. 2014, 79, 9847−9853.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.