Synthesis, Optimization and Characterization of Metallic Ion and Levofloxacin Loaded Nanomaterials-Based Therapeutics against Multidrug-Resistant Pseudomonas aeruginosa
Keywords:
Zinc nanoparticles, Levofloxacin, Nanocomposites, Pseudomonas aeruginosa, Multidrug resistanceAbstract
The rise of multidrug-resistant (MDR) Pseudomonas aeruginosa poses a significant challenge in clinical settings, necessitating novel antimicrobial strategies. This study reports the synthesis, optimization, and characterization of zinc nanoparticles (ZnNPs) co-loaded with levofloxacin to enhance antibacterial efficacy. Zinc nanoparticles were synthesized via a chemical precipitation method and optimized at pH 8.0, with a zinc acetate concentration of 0.1 M, yielding particles with an average size of 80 ± 5 nm and a drug loading efficiency of 74.5%. Characterization by UV-Vis, FTIR, XRD, DLS, SEM, and TEM confirmed successful synthesis and drug incorporation. The nanoparticles exhibited a zeta potential of -25 mV, indicating good colloidal stability. In-vitro studies against MDR P. aeruginosa revealed that Zn-Levofloxacin nanoparticles achieved a minimum inhibitory concentration (MIC) of 2 µg/mL, compared to 8 µg/mL for levofloxacin alone. Disk diffusion assays showed an inhibition zone of 30 ± 2 mm for the nanoparticle formulation versus 20 ± 1.5 mm for the free drug. Time-kill assays demonstrated >99.9% bacterial reduction within 6 hours. These results suggest that zinc-levofloxacin nanocomposites offer a promising and potent therapeutic alternative against MDR P. aeruginosa.
Downloads
References
Zulfkar, Q., Humaira, A., Mohd, A. D., & Afshana, Q. (2025). THE GROWING THREAT OF ANTIBIOTIC RESISTANCE: MECHANISMS, CAUSES, CONSEQUENCES, AND SOLUTIONS. International Journal of Cognitive Neuroscience and Psychology, 3(3), 28-36.
Puri, B., Vaishya, R., & Vaish, A. (2025). Antimicrobial resistance: Current challenges and future directions. Medical Journal Armed Forces India, 81(3), 247-258.
Sakalauskienė, G. V., Malcienė, L., Stankevičius, E., & Radzevičienė, A. (2025). Unseen Enemy: mechanisms of multidrug antimicrobial resistance in gram-negative ESKAPE pathogens. Antibiotics, 14(1), 63.
Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs in Context, 7, 212527.
World Health Organization (WHO). (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.
Parvin, N., Joo, S. W., & Mandal, T. K. (2025). Nanomaterial-based strategies to combat antibiotic resistance: mechanisms and applications. Antibiotics, 14(2), 207.
Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14), 1803-1815
Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028.
Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004
Kassab, A. E. (2025). The most recent updates on the anticancer potential of fluoroquinolones: a mini review. Future Medicinal Chemistry, 1-12.
Livermore, D. M. (2002). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clinical Infectious Diseases, 34(5), 634–640
Jalal, M., Ansari, M. A., Ali, S. G., Khan, H. M., & Rehman, S. (2018). Anticandidal activity of bioinspired ZnO NPs: effect on growth, cell morphology and key virulence attributes of Candida albicans. Scientific Reports, 8(1), 1–13
Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19(7), 1979
Wang, Z., Lee, J., & Lee, J. (2017). Antibiofilm and antivirulence activities of essential oils against Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 262, 38–44
Abdulwahab, A. M., Al-Adhreai, A. A. A., Al-Hammadi, A. H., Al-Adhreai, A., Salem, A., Alanazi, F. K., & ALSaeedy, M. (2025). Synthesis, characterization, and anti-cancer activity evaluation of Ba-doped CuS nanostructures synthesized by the co-precipitation method. RSC advances, 15(6), 4669-4680.
Awasthi, A., Tripathi, A., Baran, C., & Uttam, K. N. (2025). Characterization of mung plants treated with iron oxide nanoparticles using Raman and ultraviolet-visible spectroscopy coupled with chemometrics. Analytical Letters, 58(13), 2218-2232.
Valente, P. A., Mota, S. I., Teixeira, A., Ferreiro, E., Sarmento, H., Cipriano, I., ... & Oliveira, P. J. (2025). Fourier Transform Infrared (FTIR) Spectroscopy as a Tool to Characterize Exercise and Physical Activity: A Systematic Review. Sports Medicine, 55(2), 459-472.
Salam, M. Y. A., Ogunmuyiwa, E. N., Manisa, V. K., Yahya, A., & Badruddin, I. A. (2025). Enhancing phase characterization of AlCuCrFeNi high entropy alloys using hybrid machine learning models: A comprehensive XRD analysis. Journal of Materials Research and Technology, 36, 592-605.
Coones, R. T., Kestens, V., & Minelli, C. (2025). A comparison of hydrodynamic diameter results from MADLS and DLS measurements for nanoparticle reference materials. Journal of Nanoparticle Research, 27(7), 170.
Kavi, S. S., Susithra, V., Abd El-Rehim, A. F., & Kumar, E. R. (2024). Natural grape juice assisted synthesis of metal oxide nanoparticles: Evaluation of microstructural, vibrational and colloidal stability analysis for Liquified Petroleum Gas (LPG) sensor applications. Sensors and Actuators B: Chemical, 406, 135451.
Zhao, J., Yu, X., Shentu, X., & Li, D. (2024). The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell and Tissue Research, 396(1), 1-18.
Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028.
Mahajan, M., Kumar, S., Gaur, J., Kaushal, S., Somvanshi, A., Kaur, H., ... & Lotey, G. S. (2025). Role of cellulose, phenolic compounds, and water-soluble proteins in ZnO nanoparticle synthesis using Mangifera indica leaf extract for photocatalytic and antioxidant investigations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 720, 137066.
Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004.
Zhang, L., et al. (2010). Synthesis and characterization of ZnO nanoparticles. Materials Letters, 64(16), 1785-1787
Aadnan, I., Zegaoui, O., El Mragui, A., Moussout, H., & da Silva, J. C. E. (2024). Structural, optical and photocatalytic properties under UV-A and visible lights of Co–, Ni-and Cu-doped ZnO nanomaterials. Comparative study. Arabian Journal of Chemistry, 17(1), 105336.
Jalal, M., Ansari, M. A., Alzohairy, M. A., Ali, S. G., Khan, H. M., Almatroudi, A., & Siddiqui, M. I. (2018). Anticandidal activity of bioinspired ZnO nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida albicans. Scientific Reports, 8(1), 12195.
Singh, N., Sharma, D., Thakur, M., & Dan, A. (2025). Zinc oxide-loaded chitosan-graphene oxide hydrogel nanocomposite as a potential catalyst for photocatalytic dye degradation. International Journal of Biological Macromolecules, 308, 142424.
Kumar, R., Umar, A., Kumar, G., & Nalwa, H. S. (2012). Synthesis and characterization of ZnO nanoparticles. International Journal of Nanomedicine, 7, 5609–5618.
Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. (2007). Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters, 90(21), 213902
Ammu, V. K., Pushpadass, H. A., Franklin, M. E. E., & Duraisamy, R. (2025). Biosynthesis of zinc oxide nanoparticles using Carica Papaya and Cymbopogon Citratus leaf extracts: a comparative investigation of morphology and structures. Journal of Molecular Structure, 1323, 140737.
Vigneshwaran, N., Kumar, S., Kathe, A. A., Varadarajan, P. V., & Prasad, V. (2006). Functional finishing of cotton fabrics using zinc oxide nanoparticles. Nanotechnology, 17(20), 5087–5095
Khani, O., Mohammadi, M., Khaz’ali, A. R., & Aghdam, M. A. (2025). Effect of pH value and zeta potential on the stability of CO2 foam stabilized by SDS surfactant and SiO2, ZnO and Fe2O3 nanoparticles. Scientific Reports, 15(1), 10302.
Wang, Y., Li, P., Truong-Dinh Tran, T., Zhang, J., Kong, L., & Chen, Y. (2017). Synthesis and antibacterial activities of levofloxacin-loaded chitosan nanoparticles. International Journal of Biological Macromolecules, 97, 228–235.
Du, J., Arwa, A. H., Cao, Y., Yao, H., Sun, Y., Garaleh, M., ... & Escorcia-Gutierrez, J. (2024). Green synthesis of zinc oxide nanoparticles from Sida acuta leaf extract for antibacterial and antioxidant applications, and catalytic degradation of dye through the use of convolutional neural network. Environmental Research, 258, 119204.
Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225.
Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137-152.
Usha, D., & Ashwin, B. M. (2024). Microwave-assisted green synthesis of zinc oxide nanoparticles using pistia stratiotes for anticancer and antibacterial applications. Materials Research Express, 11(8), 085004.
Hao, Y., Wang, Y., Zhang, L., Liu, F., Jin, Y., Long, J., ... & Yang, H. (2024). Advances in antibacterial activity of zinc oxide nanoparticles against Staphylococcus aureus. Biomedical Reports, 21(5), 161.
Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686.
Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L. J., Povey, M. J., ... & O’Neill, A. J. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal of Nanoparticle Research, 12(5), 1625-1636
Rezaei, F. Y., Pircheraghi, G., & Nikbin, V. S. (2024). Antibacterial activity, cell wall damage, and cytotoxicity of zinc oxide nanospheres, nanorods, and nanoflowers. ACS Applied Nano Materials, 7(13), 15242-15254.
Islam, M. F., Miah, M. A. S., Huq, A. O., Saha, A. K., Mou, Z. J., Mondol, M. M. H., & Bhuiyan, M. N. I. (2024). Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities. Heliyon, 10(3).
Hooper, D. C. (1999). Mechanisms of fluoroquinolone resistance. Drug Resistance Updates, 2(1), 38-55.
Peter, A., Jose, J., & Bhat, S. G. (2024). A modified fluorescent probe protocol for evaluating the reactive oxygen species generation by metal and metal oxide nanoparticles in gram-positive and gram-negative organisms. Results in Engineering, 24, 102925.
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76–83.
Collins, J. A., & Osheroff, N. (2024). Gyrase and topoisomerase IV: recycling old targets for new antibacterials to combat fluoroquinolone resistance. ACS infectious diseases, 10(4), 1097-1115.
Raghunath, A., & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137-152.
Yan, H., Wen, P., Tian, S., Zhang, H., Han, B., Khan, J., ... & Li, Y. (2024). Enhancing biofilm penetration and antibiofilm efficacy with protein nanocarriers against pathogenic biofilms. International Journal of Biological Macromolecules, 256, 128300.
Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.
Owosagba, V. A., Stephen, J., Eke, B. G., Ebiala, F. I., Okonkwo, C. O., Alli, O. O., ... & Yerima, S. R. (2025). Antimicrobial Resistance (AMR): Chemistry Solutions Beyond Traditional Antibiotics. Journal of Life Science and Public Health, 1(1), 10-23.
Varghese, M., Mathew, A. A., & Balachandran, M. (2024). Nanocomposites in combating antimicrobial resistance. In Nanotechnology based strategies for combating antimicrobial resistance (pp. 203-229). Singapore: Springer Nature Singapore.
Uma Thanu Krishnan Neela, N., Szewczyk, P. K., Karbowniczek, J. E., Polak, M., Knapczyk‐Korczak, J., & Stachewicz, U. (2025). Improving Stability and Mechanical Strength of Electrospun Chitosan‐Polycaprolactone Scaffolds Using Genipin Cross‐linking for Biomedical Applications. Macromolecular Rapid Communications, 46(13), 2400869.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
 
						

