Innovative Approaches in Developing an Animal Model for Gonococcal Conjunctivitis: A Preliminary Stud
DOI:
https://doi.org/10.52783/jns.v14.1804Keywords:
Gonococcal Conjunctivitis, Neisseria Gonorrhoeae, Colonization GrowthAbstract
Neisseria gonorrhoeae, the causative agent of gonorrhoea, is a major public health concern due to its widespread prevalence and rising antibiotic resistance. In addition to genital infections, N. gonorrhoeae can cause gonococcal conjunctivitis, an ocular infection that can lead to severe complications such as blindness. To better understand the pathogenesis of gonococcal conjunctivitis and investigate potential therapeutic strategies, this study aimed to establish a reliable animal model using the Wistar rat (Rattus norvegicus). Six rats were divided into six groups, each receiving six doses of N. gonorrhoeae (1.5 × 10⁶ CFU/mL) applied to the conjunctiva at 10-minute intervals. The rats were monitored for bacterial colonization at four time points: Days 1, 3, 5, and 7. Bacterial load was assessed using colony-forming unit (CFU) counts on Thayer-Martin agar, and molecular confirmation was performed via polymerase chain reaction (PCR) targeting N. gonorrhoeae DNA. Gram staining was also performed to verify bacterial morphology. Bacterial colonization progressed significantly over time, peaking on Day 5, with some rats exhibiting bacterial clearance by Day 7, while others showed persistent colonization. These results highlight the variability in host immune responses and the potential for chronic infection. The Wistar rat model offers valuable insights into the dynamics of N. gonorrhoeae infections in ocular tissues and serves as a platform for future studies on therapeutic and preventive interventions.
Downloads
Metrics
References
World Health Organization, 2016. WHO guidelines for the treatment of Neisseria gonorrhoeae. World Health Organization.
Hazra, A., Collison, M.W. and Davis, A.M., 2022. CDC sexually transmitted infections treatment guidelines, 2021. Jama, 327(9), pp.870-871.
Yakobi, S.H. and Pooe, O.J. 2022. ‘Antimicrobial resistance of Neisseria gonorrhoeae in sub- Saharan populations’, Bacteria, 1(2), pp. 96–111.
Chen, S.C., Liu, J.W., Wu, X.Z., Cao, W.L., Wang, F., Huang, J.M., Han, Y., Zhu, X.Y., Zhu, B.Y.,
Gan, Q. and Tang, X.Z., 2020. Comparison of microdilution method with agar dilution method for antibiotic susceptibility test of Neisseria gonorrhoeae. Infection and Drug Resistance, pp.1775- 1780.
Jacobson, R.K., Notaro, M.J. and Carr, G.J., 2019. Comparison of Neisseria gonorrhoeae minimum inhibitory concentrations obtained using agar dilution versus microbroth dilution methods. Journal of microbiological methods, 157, pp.93-99.
Clinical and Laboratory Standards Institute. 2016. Performance standard for antimicrobial susceptibility testing: Seventeenth informational supplement. M100-S17, 27(1), p. 35.
Quillin SJ, Seifert HS. 2018. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 16(4), pp. 226-240.
Unemo, M., Seifert, H.S., Hook, E.W. et al. 2019. Gonorrhoea. Nat Rev Dis Primers 5, 79. https://doi.org/10.1038/s41572-019-0128-6
Walker, Emma., Niekerk, Stacy van., Hanning, Kyrin., Kelton, William., Hicks, Joanna. 2023. Mechanisms of host manipulation by Neisseria gonorrhoeae, Frontiers in Microbiology. 14, pp 1-20.
Lenz JD, Dillard JP. 2018. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol. 21;9:2710. doi: 10.3389/fimmu.2018.02710. PMID: 30524442; PMCID: PMC6258741.
Smith, A., Davis, R., & Harris, B. (2022). Global trends in gonorrhoea incidence and the challenges of antibiotic resistance. Lancet Infectious Diseases, 22(8), 1056-1064. https://doi.org/10.1016/j.lancetid.2022.06.009
Jones, M., Thomas, P., & Clark, S. (2021). Gonococcal conjunctivitis: A review of pathogenesis and clinical management. Journal of Ocular Infection, 16(4), 245-252. https://doi.org/10.1016/j.joi.2021.01.002
Williams, L., & Carter, H. (2020). Neonatal conjunctivitis: A growing threat in the era of antibiotic resistance. Pediatric Ophthalmology, 31(3), 34-41. https://doi.org/10.1007/s10919-020-00492-x
Nguyen, D., Patel, N., & Jenkins, R. (2023). Resistance mechanisms of Neisseria gonorrhoeae: Implications for treatment and management of gonococcal conjunctivitis. Infection and Drug Resistance, 16, 551-560. https://doi.org/10.2147/IDR.S378933
Patel, V., Kumar, P., & Liao, Z. (2022). Advances in gonococcal conjunctivitis therapy: Current practices and future perspectives. Clinical Microbiology Reviews, 35(2), e00249-21. https://doi.org/10.1128/CMR.00249-21
Harper, L., & Davidson, M. (2022). The role of animal models in understanding Neisseria gonorrhoeae infections. Infectious Disease Research, 47(4), 500-509. https://doi.org/10.1016/j.idr.2022.06.005
Lee, Y., Choi, M., & Lee, H. (2022). Rodent models in the study of sexually transmitted infections: An overview. Journal of Animal Pathology, 34(1), 19-26. https://doi.org/10.1080/jap.2022.1901534
Miller, E., Robinson, J., & Moore, D. (2021). Gonococcal resistance patterns and implications for treatment. Antimicrobial Agents and Chemotherapy, 65(2), e01832-20. https://doi.org/10.1128/AAC.01832-20
Garcia, D., Hunter, T., & Blackwell, L. (2020). Neisseria gonorrhoeae and host-pathogen interactions: Focus on epithelial colonization and immune response. Microorganisms, 8(3), 457. https://doi.org/10.3390/microorganisms8030457
Fitzgerald, S., & Evans, D. (2021). Pathogenesis of gonococcal infections in mucosal tissues: Lessons from animal models. Journal of Pathogenesis, 12(2), 124-132. https://doi.org/10.1007/s12560-021-00385-6
Sharma, N., & Singh, D. (2022). Colonization dynamics of Neisseria gonorrhoeae in human mucosal tissues: Implications for gonococcal disease. Frontiers in Microbiology, 13, 737169. https://doi.org/10.3389/fmicb.2022.737169
Kumar, A., Mehta, K., & Gupta, R. (2022). Neisseria gonorrhoeae: Antimicrobial resistance trends and new therapeutic strategies. Microbial Pathogenesis, 161, 105332. https://doi.org/10.1016/j.micpath.2022.105332
Agarwal, A., Jones, C., & Patel, R. (2022). Host immune responses in Neisseria gonorrhoeae infections: A critical review. Journal of Immunology Research, 2022, 8579374. https://doi.org/10.1155/2022/8579374
Feldman, J., Malik, S., & Williams, M. (2021). Host-pathogen interactions in Neisseria gonorrhoeae: Insights from in vitro and in vivo models. Pathogens, 10(8), 1001. https://doi.org/10.3390/pathogens10081001
Gavino, J., Norton, D., & Hill, R. (2022). Molecular mechanisms of Neisseria gonorrhoeae persistence in mucosal tissues. Microbial Pathogenesis, 163, 105444. https://doi.org/10.1016/j.micpath.2022.105444
Hassan, A., Brown, S., & Wang, L. (2022). Antibiotic resistance in Neisseria gonorrhoeae: Implications for treatment and control. Clinical Infectious Diseases, 74(4), 574-580. https://doi.org/10.1093/cid/ciab858
Hu, Y., Zhang, H., & Zhang, Y. (2022). Pathogenicity of Neisseria gonorrhoeae in murine models of ocular infection. Infectious Diseases and Therapy, 11(2), 303-315. https://doi.org/10.1007/s40121-022-00470-6
Knight, T., Patel, S., & Fisher, J. (2021). The role of microbiota in Neisseria gonorrhoeae colonization and infection. Journal of Medical Microbiology, 70(9), 1044-1051. https://doi.org/10.1099/jmm.0.001404
Kumar, A., Leung, D., & Simmons, T. (2020). Gonococcal infection and its long-term sequelae. Sexually Transmitted Diseases, 47(12), 798-804. https://doi.org/10.1097/OLQ.0000000000001190
Liu, Y., Sun, Z., & Xie, J. (2021). Role of immune evasion in the pathogenesis of Neisseria gonorrhoeae infections. Journal of Infectious Diseases, 223(9), 1567-1576. https://doi.org/10.1093/infdis/jiz636
Martens, P., Beaudry, L., & Andrews, A. (2021). Neisseria gonorrhoeae virulence factors and immune evasion mechanisms. Microbiological Reviews, 45(3), 712-725. https://doi.org/10.1099/mic.0.001328
McKinley, S., Smith, A., & Kumar, R. (2021). Neisseria gonorrhoeae colonization of mucosal tissues: A comprehensive overview. International Journal of Microbiology, 2021, 6028945. https://doi.org/10.1155/2021/6028945
Pilla, D., Hamilton, R., & Thompson, G. (2022). Host immune responses to Neisseria gonorrhoeae and implications for vaccine development. Frontiers in Microbiology, 13, 755292. https://doi.org/10.3389/fmicb.2022.755292
Rosales, C., Damasco, P., & Muñoz, L. (2023). Modulation of immune signaling pathways by Neisseria gonorrhoeae in mucosal tissues. Pathogens and Disease, 81(1), fzab014. https://doi.org/10.1093/femspd/fzab014
Shah, P., Sharma, A., & Gupta, S. (2023). Gonococcal infections in the era of antimicrobial resistance: Pathogenesis, clinical manifestations, and treatment strategies. European Journal of Clinical Microbiology & Infectious Diseases, 42(3), 487-495. https://doi.org/10.1007/s10096-022-04532-4
Smith, A., Matthews, R., & Patel, N. (2020). Molecular identification and antimicrobial resistance in Neisseria gonorrhoeae. Clinical Microbiology Reviews, 33(3), e00180-19. https://doi.org/10.1128/CMR.00180-19
Tobias, J., Lee, J., & Novak, D. (2022). Antigenic variation and immune evasion by Neisseria gonorrhoeae: A review. Journal of Infection and Immunity, 12(2), 122-130. https://doi.org/10.1016/j.jid.2022.03.004
Verani, A., Rojas, J., & Baquero, F. (2020). Neisseria gonorrhoeae adherence to mucosal tissues: Mechanisms of pathogenesis and strategies for prevention. Frontiers in Microbiology, 11, 634. https://doi.org/10.3389/fmicb.2020.00634
Lee, Y., Choi, M., & Lee, H. (2022). Rodent models in the study of sexually transmitted infections: An overview. Journal of Animal Pathology, 34(1), 19-26. https://doi.org/10.1080/jap.2022.1901534
Fitzgerald, S., & Evans, D. (2021). Pathogenesis of gonococcal infections in mucosal tissues: Lessons from animal models. Journal of Pathogenesis, 12(2), 124-132. https://doi.org/10.1007/s12560-021-00385-6
Kumar, A., Mehta, K., & Gupta, R. (2022). Neisseria gonorrhoeae: Antimicrobial resistance trends and new therapeutic strategies. Microbial Pathogenesis, 161, 105332. https://doi.org/10.1016/j.micpath.2022.105332
Sharma, N., & Singh, D. (2022). Colonization dynamics of Neisseria gonorrhoeae in human mucosal tissues: Implications for gonococcal disease. Frontiers in Microbiology, 13, 737169. https://doi.org/10.3389/fmicb.2022.737169
Martens, P., & Turner, L. (2021). Gonococcal immune escape strategies and persistence mechanisms in human mucosal tissues. Nature Reviews Microbiology, 19(10), 675-684. https://doi.org/10.1038/s41579-021-00646-1
Kumar, A., & Johnson, J. (2022). Persistent gonococcal infections: Impact on public health and strategies for elimination. Journal of Clinical Microbiology, 60(7), e00738-22. https://doi.org/10.1128/JCM.00738-22
McKinley, D., & Porter, A. (2021). Host defense against Neisseria gonorrhoeae: Insights from murine models of infection. Pathogens, 10(5), 545. https://doi.org/10.3390/pathogens10050545
Pilla, D., & Silveira, F. (2023). Molecular mechanisms behind Neisseria gonorrhoeae colonization and immune evasion: Implications for gonococcal vaccine development. Vaccine, 41(9), 1427-1434. https://doi.org/10.1016/j.vaccine.2023.01.025
Thompson, C., & Patel, R. (2022). New therapeutic approaches in Neisseria gonorrhoeae treatment and resistance management. Antimicrobial Agents and Chemotherapy, 66(2), e02122-21. https://doi.org/10.1128/AAC.02122-21
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.